• 제목/요약/키워드: Rigid Surfaces

검색결과 85건 처리시간 0.027초

복합포장용 고탄성 저수축 롤러전압콘크리트 기층 개발을 위한 기초연구 (A Preliminary Study on the Development of a High Elastic Modulus and Low-Shrinkage Roller-Compacted Concrete Base for Composite Pavement)

  • 정건우;이승우
    • 한국도로학회논문집
    • /
    • 제19권1호
    • /
    • pp.45-52
    • /
    • 2017
  • PURPOSES : The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS : Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS : According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.

이미지 방법을 이용한 자유 및 강체 표면 옆의 맥동하는 버블 주위 속도 포텐셜 해석 (Analysis of Velocity Potential around Pulsating Bubble near Free or Rigid Surfaces Based on Image Method)

  • 이상륜;최걸기;김종철;유승화
    • 한국해양공학회지
    • /
    • 제32권1호
    • /
    • pp.28-35
    • /
    • 2018
  • An analytical method for predicting the velocity potential around a pulsating bubble close to a free or rigid wall was established using an image method. Because the velocity potential should satisfy two boundary conditions at the bubble surface and rigid wall, we investigated the velocity in the normal direction at the two boundaries by adding the image bubbles. The potential was analyzed by decomposing the bubble motion as two independent motions, pulsation and translation, and we found that when the number of image bubbles was greater than ten, the two boundary conditions were satisfied for the translation term. By adding many image bubbles after the approximation of the pulsation term, we also confirmed that the boundary condition at the wall was satisfied.

Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches

  • Ozsahin, Talat Sukru
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.383-403
    • /
    • 2007
  • The contact problem for an elastic layer resting on an elastic half plane is considered according to the theory of elasticity with integral transformation technique. External loads P and Q are transmitted to the layer by means of two dissimilar rigid flat punches. Widths of punches are different and the thickness of the layer is h. All surfaces are frictionless and it is assumed that the layer is subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane will be continuous, if the value of load factor, ${\lambda}$, is less than a critical value, ${\lambda}_{cr}$. However, if tensile tractions are not allowed on the interface, for ${\lambda}$ > ${\lambda}_{cr}$ the layer separates from the interface along a certain finite region. First the continuous contact problem is reduced to singular integral equations and solved numerically using appropriate Gauss-Chebyshev integration formulas. Initial separation loads, ${\lambda}_{cr}$, initial separation points, $x_{cr}$, are determined. Also the required distance between the punches to avoid any separation between the punches and the layer is studied and the limit distance between punches that ends interaction of punches, is investigated. Then discontinuous contact problem is formulated in terms of singular integral equations. The numerical results for initial and end points of the separation region, displacements of the region and the contact stress distribution along the interface between elastic layer and half plane is determined for various dimensionless quantities.

Analytical solution of a contact problem and comparison with the results from FEM

  • Oner, Erdal;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.607-622
    • /
    • 2015
  • This paper presents a comparative study of analytical method and finite element method (FEM) for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical results. Also, the contact areas obtained from finite element method are very close to results obtained from analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two methods.

상계요소법에 의한 판재 인발공정에 관한 연구 (A Study on the Drawing of Strip by Upper Bound Elemental Technique)

  • 허관도;최영;최일국
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.11-17
    • /
    • 2003
  • For metal forming analysis, upper-bound solution is a practical method because the solution is overestimated. However it is not easy to determine the stresses on dies by using upper-bound solution. In this study, new scheme to calculate the stresses on dies based on upper bound solution is proposed. In the velocity fields, imaginary velocity is adapted to analyze the normal pressure on die surfaces. To verify the proposed scheme. plane strain drawing has been considered. The stresses on dies obtained by the proposed scheme are compared with the results of rigid plastic FEM and the experimental results. In the experiments, pressure film is used to measure the normal pressure on dies.

거리맵을 이용한 3차원 얼굴 스캔 데이터와 CBCT 데이터의 정확한 정합 기법 (Accurate Registration Method of 3D Facial Scan Data and CBCT Data using Distance Map)

  • 이정진
    • 한국멀티미디어학회논문지
    • /
    • 제18권10호
    • /
    • pp.1157-1163
    • /
    • 2015
  • In this paper, we propose a registration method of 3d facial scan data and CBCT data using voxelization and distance map. First, two data sets are initially aligned by exploiting the voxelization of 3D facial scan data and the information of the center of mass. Second, a skin surface is extracted from 3D CBCT data by segmenting air and skin regions. Third, the positional and rotational differences between two images are accurately aligned by performing the rigid registration for the distance minimization of two skin surfaces. Experimental results showed that proposed registration method correctly aligned 3D facial scan data and CBCT data for ten patients. Our registration method might give useful clinical information for the oral surgery planning and the diagnosis of the treatment effects after an oral surgery.

First-principles studies of the structural and electronic properties of rigid carbon nanofoam

  • Park, So-Ra;Kittimanapun, Kritsada;Ahn, Jeung-Sun;Tomanek, David;Kwon, Young-Kyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.76-76
    • /
    • 2010
  • Using ab initio density functional calculations, we investigate the structural and electronic properties of porous schwarzite structures formed by $sp^2$ carbon minimal surfaces with negative Gaussian curvature. We calculate the equilibrium geometries, elastic properties and electronic structure of two systems with cubic unit cells containing 152 and 200 carbon atoms, which are metallic and very rigid. The porous schwarzite structure can be efficiently doped by electron donors as well as accepors, making it a promising candidate for the next generation of alkali ion batteries. Furthermore, the schwarzite structures can be magnetic when doped and thus act as arrays of interconnected quantum spin dots. We also propose that two interpenetrating schwarzite structures be used as a ultimate super-capacitor.

  • PDF

임의 조건으로 성형되는 박판의 평면변형률 해석 (Plane Strain Analysis of Thin Sheet Forming with Arbitrary Conditions)

  • 금영탁;이승열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.201-212
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation of arbitrarily-shaped tool profiles and arbitrarily draw-in conditions is introduced. An implicit, incremental, updated Lagrangian formulation is employed, introducing a rigid-viscoplastic constitutive equation. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshe without depending on the explicit spatial derivatives of tool surfaces. The FEM formulation is tested in the sections automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains in the stretched section is obtained, but also the numerical stability of current formulation is verified in the two-side draw-in section.

  • PDF

알루미늄 AA 1050 판재구속전단가공 시 불균질 집합조직 형성의 해석 (Analysis on Inhomogeneous Textures Developed in Aluminum AA 1050 Sheets during Continuous Confined Strip Shearing)

  • 이재필;석한길;허무영
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.382-387
    • /
    • 2004
  • The continuous confined strip shearing (CCSS) based on the equal channel angular pressing (ECAP) was modeled by means of a rigid-plastic two-dimensional finite element method (FEM). Parallel to the simulations, samples of AA 1050 sheets were experimentally deformed by CCSS. The CCSS deformation led to the formation of through thickness texture gradients comprising a strong shear texture in the sheet center and weak shear textures in the sheet surfaces. FEM analysis revealed variations in the strain component $\varepsilon_13$ along the sample thickness direction, which gave rise to the evolution of different textures. A high friction between the sample and die surface was responsible for lowering intensities of the shear texture components in thickness layers close to the surfaces.

단면성형 해석에 의한 자동차 내부 판넬의 설계 (Design of automotive inner panel by sectional forming analysis)

  • 금영탁;왕노만
    • 오토저널
    • /
    • 제12권6호
    • /
    • pp.48-59
    • /
    • 1990
  • A finite element program was developed using line elements for simulating the stretch/draw forming operation of an arbitrarily-shaped plane-strain section. An implicit, incremental, updated Lagrangian formulation is employed, introducing a minimum plastic work path assumption for each time step. Geometric and material nonlinearities are also considered within each time step. The finite element equation is based on the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The membrane approximation is adopted under the plane stress assumption. The sheet material is assumed to obey a rigid-viscoplastic constitutive law. The developed program was tested in the die-tryout of typical automotive inner panels. In order to determine a single friction coefficient and boundary length, FEM results and measurements of thinning for a stretched section of final die were compared. After finding analysis parameters, the sheet forming operations of original and final die designs were simulated. Excellent agreement between measured and computed thickness strains was obtained and the developed program was able to identify die designs which were rejected during die tryout.

  • PDF