• Title/Summary/Keyword: Rigid Link

Search Result 115, Processing Time 0.023 seconds

A Study on the Dynamic Analysis for Flexible Robotic Arms (유연 로보트팔의 동특성 해석에 관한 연구)

  • Kim, Chang-Boo;You, Young-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF

Loads of a Rigid Link Connecting a Container Ship and a Catamaran Type Container Offloading Vessel in Waves (파랑중 컨테이너선과 하역선의 연결장치에 작용하는 하중계산)

  • Hong, Do-Chun;Kim, Yong-Yook;Han, Soon-Hung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The hydrodynamic interaction of two floating bodies in waves freely floating or connected by a rigid link is studied by using a boundary element method in the frequency-domain. The exact two-body hydrodynamic coefficients of added mass, wave damping and exciting force are calculated from the radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function. The irregular frequencies in the conventional Green integral equation make it difficult to predict the physical resonance of the fluid in the gap between two bodies floating side by side. However, the improved Green integral equation employed in this study is free of irregular frequencies and always yields the exact solution of the multi-body radiation-diffraction potential boundary value problem. The 6 degree-of-freedom motions of two bodies freely floating side by side or connected parallel by a rigid link have been calculated for the incident wave frequencies ranging from 0.1 to 5 radians per second in head, left and right bow quartering seas. The 6-component load of the rigid link have also been presented.

Control Strategy to Reduce Tracking Error by Impulsive Torques at the Joint

  • Yang Chulho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.61-71
    • /
    • 2005
  • The study reported deals with investigating the feasibility of control strategy for a serial rigid link manipulator that applies impulsive torques at the joints. The strategy is illustrated for a planar three rigid link manipulator. An impulse-based concept which uses successive torque impulses on rigid link as the controller for motion correction was introduced. This control strategy was tested over the entire trajectory to demonstrate that the tracking error could be reduced effectively. The best condition for minimizing the tracking error with the least impulse input at each joint is investigated by considering one design and one operating parameter. The first was the damping in the system, and the second was the sampling time during operation. The results show that this approach can provide useful guidance for the design and control of robot manipulators that require minimum impulse feedback for accurate tracking.

Shape Finding of Unstable Link Structures (불안정(不安定) Link 구조물(構造物)의 형태해석(形態解析)에 관(關)한 연구(硏究))

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.101-107
    • /
    • 2003
  • There exists a structural problem for link structures in the unstable state. The primary characteristics of this problem are in the existence of rigid body displacements without strain, and in the possibility of the introduction of prestressing to change an unstable state into a stable state. When we make local linearized incremental equations in order to obtain knowledge about these unstable structures, the determinant of the coefficient matrices is zero, so that we face a numerically unstable situation. This is similar to the situation in the stability problem. To avoid such a difficult situation, in this paper a simple and straightforward method was presented by means of the generalized inverse for the numerical analysis of stability problem.

  • PDF

Improvement of Robot Motion Accuracy Through Link Parameter Calibrationa (연자보정 방법을 이용한 로보트 운동 정밀도 개선)

  • 이상조;조의정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.21-26
    • /
    • 1988
  • The application of robot to industry is increasing and as a result the study on robot is widely being carried out. In this study, to improve the accuracy of robot motion the method which calibrates initially assumed link parameters is considered. This method calibrates 4N link parameters for N D.O.F. robot with rigid links.

  • PDF

Fuzzy Vibration Control of 3 DOF Robot Manipulator with Flexible Link (유연한 링크를 가진 3자유도 로봇조작기 진동의 펴지제어)

  • Kim, Jae-Won;Yang, Yang, Hyun-Seok;Park, Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3883-3891
    • /
    • 1996
  • Performance and productivity of robot manipulator can be improved by increasing its working speed and extending its link length. But heavy weght of the commercial robot links, considered as "rigid body", limits its mazimum working speed and the weght of the links can be reduced for high speed operation. But this light-weight link or long link for special use cannot be consideredas "rigid" structure and vibration of the link due to its flexibility causes errors in end-effector position and orientation. Thus the elastic behaviro of the flexible link should be taken care of for increasing work speed and getting smaller error of end-effector position. In this paper, the fuzzy control theory is selected to design the controller which controlos the joint positions of the robot manipulator and suppress the vibration of flexible link. In the forst place, for the 1 DOF flexible link system, the fuzzy control theory is implemented. The contdroller for the 1 DOF flexible link system is designed. Experimental research is carried out to examine the controllability and the validity of the fuzzy control theory based controller. Next, using the extended desing schemes for the case of the 1 DOF flexible link system and usign the experimental phenomena of the 3 DOF flexible link system, the fuzzy controller for the 3 DOF flexible link system is desinged and experimented.ed and experimented.

Position control of robots with uncertain parameters using output-feedback controller (출력제어기를 이용한 불학실 파라미터를 갖는 로봇의 위치제어)

  • ;;Ailon, Amit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.472-475
    • /
    • 1997
  • The principle objective of this paper is to explain and demonstrate the advantage of the output-feedback controller proposed by Ailon in [61 by using simulation and experimental results. Namely, the goal of this study is to design and implement a real-time controller for set-point regulation of a one-link rigid robot manipulator with unknown parameters using only position measurement. For implementation a direct drive one-link rigid robot manipulator is constructed and a TMS320C40 DSP systems board is used in implementing real-time control algorithm.

  • PDF

유한요소법을 이용한 유연로보트팔 운동방정식의 정식화

  • 김창부;유영선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.233-238
    • /
    • 2001
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link represented to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M to model complex shaped links systematically and by eleminating elastic mode of higher order that does not largely affect option to reduce the number of elastic degree of freedom. Finally presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control.

Formulation of the equation of motion for flexible robotics arms by using the finite element and modal reduction method (유한요소및 모달감소법을 이용한 유연로보트팔 운동방정식의 정식화)

  • 김창부;유영선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.533-538
    • /
    • 1991
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link representation to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M. to model complex shaped links systematically and by eliminating elastic mode of higher order that does not largely affect motion to reduce the number of elastic degree of freedom. Finally, presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control,

  • PDF

Topology Design of Rigid-String Mechanism Using Constraint Force Design Method (구속조건 힘 설계기법을 이용한 강체와 스트링의 위상 최적설계)

  • Heo, Jae-Chung;Yoon, Gil-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.745-750
    • /
    • 2012
  • This study extends the constraint force design method allowing topology optimization for planar rigid-link and string mechanisms. To our best knowledge, by applying conventional machine and mechanism design theories, it is likely that it is possible to find out optimal locations of joints and lengths of rigid-links but somewhat difficult to find out optimal topology of rigid-links. To achieve optimal topology of rigid links, there is our previous contribution so called the new constraint force design method with the binary design variables determining the existence of the auxiliary forces imposing apparent lengths among unit masses. By adding new binary design variables, this research extends the constraint force design method to find out optimal mechanism consisting of stringy links as well as rigid links that seems impossible in the conventional machine and mechanism design theories.