• 제목/요약/키워드: Rifling

검색결과 9건 처리시간 0.026초

강선율 최적설계에 관한 연구 (A Study on the Optimal Design of Rifling Rate)

  • 차기업;이영현;이성배;조창기
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.998-1005
    • /
    • 2010
  • Rifling force has a torsion impulse effect on the gun tube and thus generates undesirable vibration of the gun tube about its bore axis, putting additional stress on the projectile. High rifling force at the muzzle of the gun tube may adversely influence the trajectory of the projectile. And, the service life of rifled gun barrels is known to depend on the rifling force. Rifling force along the path of the projectile in the longitudinal direction of the gun tube can be described with projectile mass, projectile velocity, gas pressure curve and rifling angle. Under the same conditions, the character of the rifling of the gun barrel decisively influences the rifling force curve. To reduce the above mentioned harmful effect, locally distinct maximum of rifling force has to be avoided and maximum rifling force needs to be minimized. The best way to minimize the maximum rifling force is to design a rifling angle function so that the rifling force curve has a near trapezoidal shape. In this paper a new approach to make the optimal rifling force curve is described. The rifling angle determining the rifling force is developed by combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems.

이상적인 강선력 곡선에 의한 강선각 설계기법 (A Study on the Design of Rifling Angle by Setting up an Idealized Rifling Force Curve)

  • 차기업;안상태;조창기;최의중
    • 한국군사과학기술학회지
    • /
    • 제18권1호
    • /
    • pp.15-21
    • /
    • 2015
  • Rifling Force can be described with projectile velocity, gas pressure and rifling angle, etc. Under the same conditions, the character of the rifling angle decisively influences the rifling force. To reduce the harmful effect, locally distinct maximum of rifling force has to be avoided. The optimal design methodology of rifling angle curve had been developed by combined Fourier series and polynomial function. When it was tried newly to design the rifling angle curve, this design trial caused not to produce the lower rifling force than the existing design. Normally, the curve of the rifling angle is designed first, then the rifling force is set according to the rifling angle curve. However during the cause analysis, new design methodology was established to design the ideal rifling force curve before the rifling angle design. With this new methodology, the above optimal design method was analyzed and its limitation was confirmed.

Research on a Method for the Optical Measurement of the Rifling Angle of Artillery Based on Angle Error Correction

  • Zhang, Ye;Zheng, Yang
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.500-508
    • /
    • 2020
  • The rifling angle of artillery is an important parameter, and its determination plays a key role in the stability, hit rate, accuracy and service life of artillery. In this study, we propose an optical measurement method for the rifling angle based on angle error correction. The method is based on the principle of geometrical optics imaging, where the rifling on the inner wall of the artillery barrel is imaged on a CCD camera target surface by an optical system. When the measurement system moves in the barrel, the rifling image rotates accordingly. According to the relationship between the rotation angle of the rifling image and the travel distance of the measurement system, different types of rifling equations are established. Solving equations of the rifling angle are deduced according to the definition of the rifling angle. Furthermore, we added an angle error correction function to the method that is based on the theory of dynamic optics. This function can measure and correct the angle error caused by the posture change of the measurement system. Thus, the rifling angle measurement accuracy is effectively improved. Finally, we simulated and analyzed the influence of parameter changes of the measurement system on rifling angle measurement accuracy. The simulation results show that the rifling angle measurement method has high measurement accuracy, and the method can be applied to different types of rifling angle measurements. The method provides the theoretical basis for the development of a high-precision rifling measurement system in the future.

포신 강선의 마모 깊이 측정을 위한 정전용량 방식의 MEMS 간극센서 (MEMS Capacitive Gap Sensor for Measuring Abrasion Depth of Gun Barrel Rifling)

  • 이석찬;이승섭;이창화
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.976-981
    • /
    • 2009
  • MEMS capacitive gap sensor is developed for measuring abrasion depth of gun barrel rifling. Measuring abrasion depth of gun barrel rifling is very important because it is related with exactness of firing and life of arms. The method using a gap sensor is not to hurt rifling. And it can measure abrasion depth through minimum shooting, because the developed gap sensor can measure from $1{\mu}m{\sim}12{\mu}m$ using Polydimethylsiloxane(PDMS) material and making a stretchable electrode on PDMS. And it's resolution is 1 ${\mu}m$ using capacitive method and MEMS technology.

크롬도금 포열의 포구속도 확률분포 특성 분석 (Analysis of Probability Distribution of Muzzle Velocity for Chrome Plated Barrel)

  • 김재갑;김재훈
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.401-407
    • /
    • 2021
  • To confirm the change of muzzle velocity and the most suitable probability distribution model of the 155 mm K9 howitzer barrel with chrome plating and changed rifling. Using a statistical program, the muzzle velocity were plotted on a normal distribution, a 2-parameter and 3-parameter Weibull distribution on a probability paper. Also, statistical parameters were estimated and muzzle velocity fitness test and probability of K676 charge were plotted. In both the chrome-plated with standard rifling and changed rifling for K9 barrel, the 2-parameter and 3-parameter Weibull distribution were skewed to the left compared to the normal distribution. It was confirmed that the muzzle velocity of the K9 barrel with chromium-plated is suitable for the normal distribution and 3-parameter Weibull distribution model.

실험계획법을 적용한 포의 강선 형상최적설계 (Barrel Rifling Shape Optimization by Using Design of Experiment Approach)

  • 강대오;우윤환;차기업
    • 대한기계학회논문집A
    • /
    • 제36권8호
    • /
    • pp.897-904
    • /
    • 2012
  • 강선설계문제는 실수형 설계변수인 형상변수와 정수형 설계변수인 강선의 개수로 이루어져 있다. 또한, 탄이 강선의 통과하는 거동을 표현하기 위하여 비선형 유한요소 해석을 사용하므로 많은 해석시간이 요구된다. 따라서, 본 연구에서는 실험계획법 기반의 효율적인 강선설계 방법을 제안한다. 첫 번째로, 3 개의 형상변수와 1 개의 정수형 변수를 포함하는 4 개의 설계변수에 대해서 보스의 직교배열표를 사용하여 25 개의 실험점을 생성한 후 각 실험점에 대해서 비선형 유한 요소 해석을 수행한다. 다음으로는 포열에서 탄이 탈출할 때의 탄의 속도와 각속도를 만족시키는 동시에 탄의 저항력을 최소화 하기 위해서 가상설계개념을 수행한다. 제안하는 가상설계개념은 설계 목적과 제약조건 그리고 효과분석을 포함하는 범함수로 생성된다. 마지막으로 가상설계개념으로부터 주어지는 새로운 설계는 초기 설계보다 나은 결과를 보여주고 있다.

주요 사격자세에 따른 인체 충격량 특성 해석 (A study on the human impulse characteristics with the typical shooting posture)

  • 최영진;이영신;한규현;채제욱;최의중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.459-464
    • /
    • 2004
  • The rifle impact of human body affected by the posture of human for rifling. The interaction human-rifle system influence the firing accuracy. In this paper, impact analysis of human model for shooting posture is carried out. ADAMS code and LifeMOD is used in impact analysis of human model and modeling of the human body, respectively. On the shooting, human model is affected by rifle impact during the 0.001 second. Performed simulation time for shooting is 0.1 second. Applied constraint condition to human-rifle system is rotating and spherical condition. As the results, the displacement of rifle and transfer path analysis of impact of human model is presented.

  • PDF

한국인의 인체 특성을 고려한 사격시 충격특성 해석 (A Study on Impact Analysis of the Korean Anthropometric Characteristic on Shooting)

  • 이장원;이영신;최영진;채제욱;최의중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.150-153
    • /
    • 2005
  • The rifle impact of human body is affected by geometry of human for rifling. The interaction of human-rifle system influence a firing accuracy. In this paper, impact analysis of human model for standing postures with two B.C. carried out. ADAMS code and LifeMOD is used in impact analysis of human model and modeling of the human body, respectively. On the shooting, human model is affected by rifle impact during the 0.001 second. Also, Because Human Natural frequency is 5-200Hz, human impact is considered during 0.2-0.005 sec. Dut to the Firng test, Performed simulation time for shooting is 0.1 second. Applied constraint condition to human-rifle system is rotating and spherical condition. Also, The resulrt of changin the position of the grip is dfferent from the each other. As the results, The human model of firing was built successfully.

  • PDF