• Title/Summary/Keyword: Ride-through

Search Result 238, Processing Time 0.021 seconds

Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning (딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측)

  • Minsu, Kim;Sanghyun, Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.375-380
    • /
    • 2022
  • High-speed railway bridges carry a risk of dynamic response amplification due to resonance caused by train loads, and running safety and riding comfort must therefore be reviewed through dynamic analysis in accordance with design codes. The running safety and ride comfort calculation procedure, however, is time consuming and expensive because dynamic analyses must be performed for every 10 km/h interval up to 110% of the design speed, including the critical speed for each train type. In this paper, a deep-learning-based prediction system that can predict the running safety and ride comfort in advance is proposed. The system does not use dynamic analysis but employs a deep learning algorithm. The proposed system is based on a neural network trained on the dynamic analysis results of each train and speed of the railway bridge and can predict the running safety and ride comfort according to input parameters such as train speed and bridge characteristics. To confirm the performance of the proposed system, running safety and riding comfort are predicted for a single span, straight simple beam bridge. Our results confirm that the deck vertical displacement and deck vertical acceleration for calculating running safety and riding comfort can be predicted with high accuracy.

The efficient DC-link voltage design of the Type 4 wind turbine that satisfies HVRT function requirements (HVRT 기능 요구조건을 만족하는 Type 4 풍력 발전기의 효율적인 직류단 전압 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.399-407
    • /
    • 2021
  • This paper proposes the DC-link voltage design method of Type 4 wind turbine that minimizes power loss and satisfies the High Voltage Ride Through(HVRT) function requirements of the transmission system operator. The Type 4 wind turbine used for large-capacity offshore wind turbine consists of the Back-to-Back converter in which the converter linked to the power grid and the inverter linked to the wind turbine share the DC-link. When the grid high voltage fault occurs in the Type 4 wind turbine, if the DC-link voltage is insufficient compared to the fault voltage level, the current controller of the grid-side converter can't operate smoothly due to over modulation. Therefore, to satisfy the HVRT function, the DC-link voltage should be designed based on the voltage level of high voltage fault. However, steady-state switching losses increase further as the DC-link voltage increases. Therefore, the considerations should be included for the loss to be increased when the DC-link voltage is designed significantly. In this paper, the design method for the DC-link voltage considered the fault voltage level and the loss is explained, and the validity of the proposed design method is verified through the HVRT function simulation based on the PSCAD model of the 2MVA Type 4 wind turbine.

Optimal Vehicle Rear Suspension through Integration of Analysis and Design Process (해석 및 설계 프로세스 통합을 통한 차량 후륜 현가장치 최적화)

  • Kim, Dowon;Park, Dohyun;Lee, Jinhwa;Shin, Sangha;Choi, Jin-Ho;Choi, Byung-Lyul;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.72-81
    • /
    • 2014
  • In this study, we perform the optimization of trailing arm bush in a vehicle rear suspension to improve the ride and handling performance. A design problem was formulated considering 2 objective functions and 7 constraints related to vehicle ride and handling performance. PIAnO, one of the PIDO (Process Integration and Design Optimization) tool, was used to automate analysis procedures and perform a design optimization. In order to assess relation between performances and design variables, we perform the DOE (Design of Experiments). To find the optimal solution, we used Progressive quadratic response surface method (PQRSM), one of the design optimization techniques equipped in PIAnO. As an optimization result, we got an optimal solution and could improve lateral force steer off-center by 43.0% while decreasing brake compliance at wheel center by 8.1%.

A Study on Cost Estimation for Smart Mobility Service (스마트 모빌리티 서비스를 위한 비용추정)

  • Cheon, Seohyung;Kim, Dongyeon;Ahn, Jae-Hyeon;Park, Kyuhong
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.301-313
    • /
    • 2021
  • The automotive industry is facing a paradigm shift, changing from owning to sharing and from manufacturing to service. However, it is hard to conclude that the economic value of smart mobility service is always positive to users. Cost related to owing or share a vehicle is very hard to estimate from the perspective of potential users as well as the benefit of the service. Focusing on the cost side of the story, this study develops a cost estimating model based on three main factors: electrification, advanced driving assistant systems (ADAS) function, and participation of ride-sharing service. As a result of the model analysis, low cost was estimated as a result when receiving cost benefits such as electrification and ride-sharing participation. Various factors were analyzed through sensitivity analysis also. These results can provide useful insights into the cost prediction and strategies for potential users and manufacturers on smart mobility service market.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

Effect of Satisfaction with the EV Rent-a-car on the Purchase of the EV (전기 렌터카 이용 만족도가 전기차 구매에 미치는 영향)

  • Koh, Youngkyu;Kim, Suwan;Son, Sang-Hoon;Rhim, Chulwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.193-208
    • /
    • 2022
  • The purpose of this study is to verify how the EV rent-a-car satisfaction affect the purchase intention of the EV. As a result of the study, Gender, Age, Quietness & Ride comfort, Charging infrastructure had a significant correlation with the EV rent-a car satisfaction level. and It is confirmed that the factors of Age, Quietness & Ride comfort, Charging infrastructure affect the EV purchase intention of the EV through the EV rent-a-car satisfaction level. The differentiation of the study is that it was analyzed through empirical research, focusing on the EV rent-a-cars as a major means of spreading the EV. also the analysis target was limited to first-time the EV's Users through the EV rent-a-car.

Modified Sensitivity Control of a Semi-Active Suspension System with MR-Damper for Ride Comfort Improvement (MR 댐퍼 반능동 현가시스템의 승차감향상을 위한 수정된 민감도제어)

  • Kim, Tae-Shik;Kim, Rae-Kwan;Park, Jae-Woo;Huh, Chang-Do;Hong, Keum-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.129-138
    • /
    • 2007
  • In this paper, a modified sensitivity control for the semi-active suspension system with a magneto-rheological (MR) damper is investigated. A 2-d.o.f quarter-car model together with a 6th order polynomial model for the MR damper is considered. For the purpose of suppressing the vertical acceleration of the sprung mass, the square of the vertical acceleration is defined as a cost function and a modified sensitivity control that updates the current input in the negative gradient of the cost function is proposed. The implementation of the proposed algorithm requires only the measurement of the relative displacement of the suspension deflection. The local stability of equilibria of the closed loop nonlinear system is proved by investigating the eigenvalues of the linearized ones. Through simulations, the passive suspension, the skyhook control, and the proposed modified sensitivity control are compared.

Integrated Chassis Control System of a Rear In-wheel Motor Vehicle (후륜 구동 인휠 전기 자동차의 구동 및 현가 통합제어시스템)

  • Kim, Hyundong;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2016
  • An in-wheel motor vehicle is a type of car that is equipped with an electric motor for each wheel. It is possible to acquire vehicle stability through a seperate driving torque control per wheel, since it directly generates the driving torque via the wheel motors. However, the vehicle ride comfort and road holding performance worsen depending on the increase of the wheel weights. In order to compensate for the impaired performance, an integrated chassis control system of the rear in-wheel motor vehicle is proposed. The proposed integrated chassis control system is composed of a driving torque control system, a semi-active suspension system, and an ESC system. According to the vehicle dynamic simulation of an in-wheel motor vehicle equipped with the integrated chassis control system, it is found that the system can improve the driving stability, ride comfort, and driving efficiency of the in-wheel motor vehicle.

Optimization of Design Variables of a Train Suspension Using Neural Network Model (신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화)

  • 김영국;박찬경;황희수;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.542-549
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of given design variables and chance them to get a bettor design. Even though commercial simulation codes are used, the computational time and cost remains non-trivial. Therefore, malty researchers have used a mesa model made by sampling data through simulation. In this paper, four mesa-models for each index group such as ride comfort, derailment Quotient, unloading radio and stability index, are constructed by use of neural network. After these meta models are constructed, multi-objective optimization are achieved by using the differential evolution. This paper shows that the optimization of design variables using the neural network model is very efficient to solve the complex optimization Problem.

Mapping vertical bridge deformations to track geometry for high-speed railway

  • Gou, Hongye;Ran, Zhiwen;Yang, Longcheng;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.467-478
    • /
    • 2019
  • Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.