• Title/Summary/Keyword: Ride Quality Criteria

Search Result 8, Processing Time 0.028 seconds

Evaluation of Ride Vibration of Agricultural Tractors(I) - A Review of Ride Quality Evaluation Criteria - (농용 트랙터의 승차(乘車) 진동(振動) 평가에 관한 연구(I) - 승차 진동의 평가 기준에 관한 고찰 -)

  • Chung, S.S.;Moon, G.S.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.314-325
    • /
    • 1992
  • This paper reviews some relevant criteria for the evaluation of ride quality of agricultural tractors. Although there still exist many deficiences and shortcomings, ISO 2631 'Guide for the evaluation of human exposure to whole body vibration' may be the most pertinent criterion to the ride quality evaluation of tractors. The effects of ride vibrations on the human health and performance were also reviewed and summarized in general terms.

  • PDF

A Study on the Evaluation of Ride Comfort using Human Model (인체모델을 사용한 승차감의 정량적 평가에 관한 연구)

  • Kim, Kwangsuk
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.57-64
    • /
    • 2011
  • Vibrations on the floor in a car are transmitted to the foot, hip, and back from the seat. Human body recognizes these vibrations, but the sensitivity for each vibration is different. To evaluate these vibrations, RMS(root mean square) of accelerations, VDV(vibration does value) are commonly used. The ride comfort evaluation is usually carried out by experiments of real cars which are expensive. The purpose of this paper is to briefly review the status of several ride vibration standards and criteria having relevance to construction machinery vehicles and to suggest recommendations for the effective use of such criteria in vehicle / component development.

Running Performance Analysis of an Articulated Light Rail Vehicle (관절형 경량전철의 주행성능 해석)

  • Hur, Shin;Park, Chan-Kyung;Han, Hyung-Suk;Ha, Sung-Do
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.159-166
    • /
    • 1999
  • In this paper, running performance analyses of an articulated light rail vehicle are carried out using VAMPIRE software package. The stability analysis to determine the critical speed and the safety analysis such as derailment coefficients, lateral forces of wheels and reduction of wheel load are carried for the track conditions of straight, transition and curving range to the operating velocity of 40km/h. Also, ride quality is analyzed. As the results of analysis, the safety of light rail vehicle satisfied with the limit values and the ride quality for tare and full load condition was shown to the "not uncomfortable" level in ISO 2631-1 (1997) criteria.

  • PDF

Control of an Active Vehicle Suspension Using Electromagnetic Motor

  • Kim, Woo-Sub;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.282-285
    • /
    • 2003
  • Two criteria of good vehicle suspension performance are typically their ability to provide good road handling and increased passenger comfort. So far, The existing active vehicle suspension uses pneumatic and hydraulic actuators that enhance road handling and passenger comfort. But these kinds of actuators have nonlinear characteristic less than an electromagnetic motor. In this research, we are trying to examine the feasibility and the experiment of an active vehicle suspension using electromagnetic motor in order to enhance the ride quality because existing active vehicle suspension using active power sources such as compressors, hydraulic pumps has nonlinear characteristic. Active vehicle suspension using electromagnetic motor will have the ability to behave differently on smooth and rough roads. The desired response should be soft in order to enhance ride comfort, but when the road surface is too rough the suspension should stiffen up to avoid hitting its limits.

  • PDF

Analysis of Riding Quality Acceptability and Characteristics of Expressway Users and Evaluation of MRI Thresholds using Receiver Operating Characteristic curves (고속도로 이용자의 승차감 평가특성 및 만족도 분석과 ROC 곡선을 이용한 평탄성 관리기준 적정성 검토)

  • Lee, Jaehoon;Sohn, Ducksu;Ryu, SungWoo;Kim, Youngwon;Park, Junyoung
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.35-44
    • /
    • 2018
  • PURPOSES : The purpose of this research is to analyze the characteristics of panels that affect the evaluating results of riding quality and to evaluate the appropriateness of roughness management criteria based on ride comfort satisfaction. METHODS : In order to analyze the influence of panel characteristics of riding quality, 33 panels, consisting of civilians and experts, were selected. Also, considering the roughness distribution of the expressway, 35 sections with MRI ranging from 1.17 m/km to 4.65 m/km were selected. Each panel boarded a passenger car and evaluated the riding quality with grades from 0 to 10, and assessed whether it was satisfied or not. After removing outlier results using a box plot technique, 964 results were analyzed. An ANOVA was conducted to evaluate the effects of panel expertise, age, driving experience, vehicle ownership, and gender on the evaluation results. In addition, by using the receiver operating characteristics (ROC) curve, the MRI value, which can most accurately evaluate the satisfaction with riding quality, was derived. Then, the compatibility of MRI was evaluated using AUC as a criterion to assess whether the riding quality was satisfactory. RESULTS : Only the age of the panel participants were found to have an effect on the riding quality satisfaction. It was found that satisfaction with riding quality and MRI are strongly correlated. The satisfaction rate of roughness management criteria on new (MRI 1.6 m/km) and maintenance (MRI 3.0 m/km) expressways were 95% and 53%, respectively. As a result of evaluating the roughness management criteria by using the ROC curve, it was found that the accuracy of satisfaction was the highest at MRI 3.1-3.2 m/km. In addition, the AUC of the MRI was about 0.8, indicating that the MRI was an appropriate index for evaluating the riding quality satisfaction. CONCLUSIONS : Based on the results, the distribution of the panels' age should be considered when panel rating is conducted. From the results of the ROC curve, MRI of 3.0 m/km, which is a criterion of roughness management on maintenance expressways, is considered as appropriate.

Dynamic Performance Analysis for Secondary Suspension of Maglev Control Systems with a Combined Lift and Guidance (편심배치방식 자기부상 제어시스템의 2차 현가에 대한 동특성 해석)

  • Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.53-65
    • /
    • 1992
  • For improving the performance of maglev systems with a combined lift and guidance, it is suggested that the multivariable control systems and a secondary suspension should be added. The former is required to reject both track irregularities in vertical disturbances and wind gusts in lateral disturbances, and the latter to guarantee passengers against an unsatisfied criteria in ride quality. In this paper, bond graph model for the study of nonlinear dynamics of maglev systems with a combined lift and guidance is presented briefly. And, the secondary suspension is analyzed to understand the role of stiffness and damping factors in passive devices. Finally, LQG/LTR mulitivariable control systems are designed for the overall maglev systems with and without secondary suspension, and then the system performances in these two cases are evaluated.

  • PDF

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

Review of Minimum Curve Radius and Cant Range Setting for Mixed Section of Low and High speed Trains in Conventional Railway Line (일반철도의 저속 및 고속열차 혼용구간 최소곡선반경 및 설정캔트범위 검토)

  • Lee, Jae-Hyuk;Kim, Jeong-Hyeok;Park, Young-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.345-353
    • /
    • 2020
  • On conventional railway lines, trains with different speeds are operated. Therefore, trains moving on curved sections with cants must accept various ranges of balanced cants, cant deficiency, and cant excess, which is essential for the comfort and safety of train operation. In this study, the correlation between the curve radius, cant, and train speed on a track was analyzed to check the cant range that satisfies the criteria of train types, operation speed, cant deficiency, and cant excess. Also, the range of setting the cant by the curve radius and balanced cant were calculated by a regression analysis of train speed according to the frequency of operation in the case of mixed trains. The results could make it possible to improve the speed of the operation route, reduce the loss of ride quality, reduce the risk of derailing caused by cant deficiency, and minimize the load deflection by excess cant. This will ensure the safety of trains running on curves and improve the efficiency of track maintenance.