• Title/Summary/Keyword: Richardson Number

Search Result 60, Processing Time 0.027 seconds

Experimental Study on the Velocity Structure of 2-D Density Current Induced by Selective Withdrawal (선택취수에 의한 2차원 밀도류의 흐름특성에 관한 실험적 연구)

  • Lyu, Siwan;Kim, Young Do;Cho, Gilje;Kwon, Jae Hyun;Lee, Nam Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.825-832
    • /
    • 2009
  • A series of laboratory experiments has been performed to investigate the flow characteristics of 2-dimensional density currents induced by selective withdrawal, which is commonly suggested as a measure for removal of high turbid water from reservoirs. Saltwater has been used to simulate the density stratification over depth and PIV(Particel Image Velocimetry) for observing the velocity structure. Experimental conditions have been established according to Richardson number, which is the dimensionless number that expresses the ratio of potential to kinetic energy. From the experiments, the patterns of longitudinal decay of centerline axial velocity induced by the withdrawal have been distinguished from other experimental cases. The rate of longitudinal decay increase as the Richardson number increases. The variations of volumetric and momentum flux along the longitudinal axis have also shown to be dependent on Richardson number.

A Comparison of Various Governing Parameters on Hydrodynamic Stability in Interface on Small Solar Pond (소형태양수구내(小型太陽水構內) 중간경계면(中間境界面)에서 수력학적(水力學的) 안정(安定)에 관(關)한 각종(各種) 지배변수(支配變數)의 비교(比較))

  • Park, Ee-Dong
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.11-19
    • /
    • 1985
  • In this paper, the interface stability not to occur mixing and entrainment between the adjacent layers has been studied in the case of the selective withdrawal of a stratum and the injection in stratified fluid formed by the density difference in a small solar pond. There are stability parameter, Richardson number, Rayleigh number and Froude number as the parameters governing stability in order to measure the interface stability on the stratified fluid. The model which could measure the interface stability on the stratified fluid was the small solar pond composed by 1 meters wide, 2 meters high, and 5 meters long. In order to measure the interface stability on the stratified fluid at the inlet port, the middle section and the outlet port, Richardson number, Rayleigh number, and Froude number involved in the parameters governing the stability were calculated by means of the data resulted from the test of the study on hydrodynamic stability between the convective and nonconvective layers in that solar pond. Richardson number written by the ratio of inertia force to buoyancy force can be used in order to measure the stability on the stratified fluid related to the buoyancy force generated from the injection of fluid. Rayleigh number written by the product of Grashof number by Prandtl number can be used in order to measure the stability of the fluid related to the heat flux and diffusivity of viscosity. Froude number written by the ratio of gravity force to inertia force can be used in order to measure the stability of the nonhomogeneous fluid related to the density difference. As the result of calculating the parameters governing stability, the interface stability on the stratified fluid couldn't be identified below the 70cm height from the bottom of the solar pond, but it could be identified above the 70cm height from it at the inlet port, the middle section and the outlet port. When compared with such the three parameters as Richardson number, Rayleigh number, Froude number, the calculated result was in accord with them at inlet port, the middle section and the outlet port. Henceforth, it is learned that even though any of the three parameters is used for the purpose of measuring the interface stability on the stratified fluid, the result will be the same with them. It is concluded that all the use of Richardson number, Rayleigh number, and Froude number, is desirable and infallible to measure the interface stability on the stratified fluid in the case of considering the exist of the fluid flow and the heat flux like the model of the solar pond.

  • PDF

Effect of Schmidt Number on Cohesive and Non-cohesive Sediment Suspension Modeling (점착성, 비점착성 부유사 모형에 대한 Schmidt 수의 영향)

  • Byun, Ji-Sun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.703-715
    • /
    • 2014
  • This study aims to investigating the effect of Schmidt number (${\sigma}_c$) on sediment suspension and hydrodynamics calculation. The range of ${\sigma}_c$ is also studied based on the flux Richardson number ($Ri_f$) and gradient Richardson number ($Ri_g$). Numerical experiments are carried out by 1 dimensional vertical model. Both cohesive and non-cohesive sediments are tested under the conditions of pure current and oscillatory flow. The turbulence damping effect due to sediment suspension is examined considering ${\sigma}_c$ as a constant for the damping effect. The results of this study show the consistent effect of ${\sigma}_c$ on sediment suspension regardless of hydrodynamic condition. It is also found that the model overestimates the flow velocity and turbulent kinetic energy when the damping effect is not considered. Under the conditions of $Ri_f$ and $Ri_g$ causing density stratification, it is known that the vertical mixing of sediment is reasonably calculated in the range of ${\sigma}_c$ from 0.3 to 0.5.

Numerical Study of the Thermal Effects on the Centrifugal Instability (온도 분포가 원심 불안정성에 미치는 영향에 대한 전산해석적 연구)

  • Hwang Jong-Yeon;Mutabazi Innocent;Lee Sung-Su;Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.578-586
    • /
    • 2006
  • Numerical simulations are carried out to investigate the thermal effects of the gravitational potential on the centrifugal instability of a Taylor-Couette flow, and to further study the detailed flow fields and flow bifurcations to spiral vortices. The effects of centrifugal potential on the centrifugal instability are also investigated in the current study. Spiral vortices have various types of mode depending on Grashof number and Reynolds number. The correlation of Richardson number with the spiral angle of the spiral vortices shows that the structure of the spiral vortices strongly depends on the Richardson number. The heat transfer rate of the inner cylinder increases with increasing Grashof number. It is also confirmed that the torque required to rotate the inner cylinder increases as Grashof number increases.

Experimental study of unsteady thermally stratified flow (비정상 열확산 현상 의 실험적 연구)

  • 이상준;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.767-776
    • /
    • 1985
  • Unsteady thermally stratified flow caused by two-dimensional surface discharge of warm water into a oblong channel was investigated. Experimental study was focused on the rapidly developing thermal diffusion at small Richardson number. The basic objective were to study the interfacial mixing between a flowing layer of warm water and an underlying body of cold water and to accumulate experimental data to test computational turbulence models. Mean velocity field measurements were carried out by using NMR-CT (Nuclear Magnetic Resonance-Computerized Tomography). It detects quantitative flow image of any desired section in any direction of flow in short time. Results show that at small Richardson number warm layer rapidly penetrates into the cold layer because of strong turbulent mixing and instability between the two layers. It is found that the transfer ofheat across the interface is more vigorous than that of momentum. It is also proved that the NMR-CT technique is a very valuable tool to measure unsteady three dimensional flow field.

THE EFFECT OF RADIAL TEMPERATURE GRADIENT ON THE CIRCULAR-COUETTE FLOW (반경방향으로의 온도구배가 Circular-Couette 유동에 미치는 영향)

  • Kang, Chang-Woo;Yang, Kyung-Soo;Mutabazi, Innocent
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.16-24
    • /
    • 2009
  • Numerical simulation has been carried out to investigate the influence of radial temperature gradient on the Circular-Couette flow. Varying the Grashof number, we study the detailed flow and temperature fields. The current numerical results show good agreement with the analytical and experimental results currently available. It turns out that spiral vortices are generated by increasing temperature gradient. We classify the flow patterns for various Grashof number based on the characteristics of flow fields and spiral vortices. The correlation between Richardson number with wave number shows that the spiral angle and size of spiral vortices increase with increasing Richardson number.

The Relation of Cross-sectional Residual Current and Stratification during Spring and Neap Tidal Cycle at Seokmo Channel, Han River Estuary Located at South Korea (대.소조기시 한강하구 석모수로에서 단면 잔차류와 성층간의 관계 연구)

  • Choi, Nak-Yong;Yoon, Byung-Il;Kim, Jong-Wook;Song, Jin-Il;Lim, Eun-Pyo;Woo, Seung-Bhum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.149-158
    • /
    • 2012
  • This study analyzed cross-sectional variations in residual current and strengths of stratification by observing cross-sectional velocity and salinity during spring tide and neap tide, respectively, for continuous 13-hour periods at 2 observation lines at northern and southern end of Seokmo Channel, which is located west of Ganghwado. Salinity distribution of channel depends on not only neap and spring tide but also impact of salinity. The residual current component was obtained by removing $M_2$ and $M_4$ tidal components that were extracted using the least squares method on 13-hour velocity component. Cross-section of residual velocity at northern and southern end of Seokmo Channel exhibited southward residual components at channel's surface layer, but northward residual current was observed at channel's bottom layer, clearly showing a 2-layer tidal circulation between surface and bottom layers. The variation in location of appearing northward residual current according to changes in spring and neap tidal cycle and its correlation with stratification were analyzed using the Richardson number and Simpsonhunter index. At northern and southern end of Seokmo Channel, northward residual current appears in the location where Richardson number is large, Simpson-hunter index appears as a value greater than 4.

Numerical Investigation of CuO-Water Nanofluid Flow and Heat Transfer across a Heated Square Cylinder

  • Bouazizi, Lotfi;Turki, Said
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.382-393
    • /
    • 2016
  • Flow over a bluff body is an attractive research field in thermal engineering. In the present study, laminar flow over a confined heated square cylinder using CuO-Water nanofluid is considered. Unsteady two-dimensional Navier-Stokes and energy equations are solved numerically using finite volume method (FVM). Recent correlations for the thermal conductivity and viscosity of nanofluids, which are function of nanoparticle volume fraction, temperature and nanoparticle diameter, have been employed. The results of numerical solution are obtained for Richardson number, nanoparticle volume fractions and nanoparticle diameters ranges of 0-1, 1-5% and 30-100 nm respectively for a fixed Reynolds number of Re = 150. At a given volume concentration, the investigations reveal that the decreasing in size of nanoparticles produces an increase in heat transfer rates from the square cylinder and a decrease in amplitude of the lift coefficient. Also, the increment of Nusselt number is more pronounced at higher concentrations and higher Richardson numbers.

An Experimental Study on Selective Withdrawal from Linear Stratified Tank (선형 성층수조에서의 선택취수에 관한 실험적 연구)

  • Kim, Young Do;Park, Jae Hyeon;Son, Byung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.499-505
    • /
    • 2011
  • The mixing behavior of turbidity currents in a reservoir is closely related with the annual temperature change of the reservoir. In the summer, the reservoir has a well defined structure: one or two thermoclines and some layers of different densities. This density stratification inhibits vertical mixing and affects various hydrodynamic processes within the reservoir. Therefore, many reservoirs can be operated to release water of the specific quality with the selective withdrawal. In this study, the hydraulic experiments were performed to analyze the efficiency of selective withdrawal. The velocity distributions are measured with PIV in the stratified tank with the "two-tank" method. The relationship between the Richardson number and the selective withdrawal efficiency are provided using the measured velocity distributions.

Effect of a Magnetic Field on Mixed Convection of a Nanofluid in a Square Cavity

  • Sheikhzadeh, G.A.;Sebdani, S. Mazrouei;Mahmoodi, M.;Safaeizadeh, Elham;Hashemi, S.E.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.321-325
    • /
    • 2013
  • The problem of mixed convection in a differentially heated lid-driven square cavity filled with Cu-water nanofluid under effect of a magnetic field is investigated numerically. The left and right walls of the cavity are kept at temperatures of $T_h$ and $T_c$ respectively while the horizontal walls are adiabatic. The top wall of the cavity moves in own plane from left to right. The effects of some pertinent parameters such as Richardson number (ranging from 0.1 to 10), the volume fraction of the nanoparticles (ranging 0 to 0.1) and the Hartmann number (ranging from 0 to 60) on the fluid flow and temperature fields and the rate of heat transfer in the cavity are investigated. It must be noted that in all calculations the Prandtl number of water as the pure fluid is kept at 6.8, while the Grashof number is considered fixed at 104. The obtained results show that the rate of heat transfer increases with an increase of the Reynolds number, while but it decreases with increase in the Hartmann number. Moreover it is found that based the Richardson and Hartmann numbers by increase in volume fraction of the nanoparticles the rate of heat transfer can be enhanced or deteriorated compared to the based fluid.