• Title/Summary/Keyword: Ricean Channel

Search Result 19, Processing Time 0.029 seconds

Sum rate and Energy Efficiency of Massive MIMO Downlink with Channel Aging in Time Varying Ricean Fading Channel

  • Yang, Lihua;Yang, Longxiang;Zhu, Hongbo;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1098-1112
    • /
    • 2018
  • Achievable sum rate and energy efficiency (EE) are investigated for the massive multiple-input multiple-output (Massive MIMO) downlink with channel aging in the time varying Ricean fading channel. Specifically, the expression of the achievable sum rate of the system for the maximum ratio transmission (MRT) precoder with aged channel state information (CSI) in the time varying Ricean fading channel is first presented. Based on the expression, the effect of both channel aging and the Ricean factor on the power scaling law are studied. It is found that the transmit power of base station (BS) is scaled down by $1/{\sqrt{M}}$(where M is the number of the BS antennas) when the Ricean factor K is equal to zero (i.e., time varying Rayleigh fading channel), indicating that aged CSI does not affect the power scaling law. However, the transmit power of the BS is scaled down by 1/M for the time varying Ricean fading channel (where $K{\neq}0$) indicating that the Ricean factor affects the power scaling law and sum rate, and channel aging only leads to a reduction of the sum rate. Second, the EE of the system is analyzed based on the general power consumption model. Both the theoretical analysis and the simulations show that the channel aging could degrade the sum rate and the EE of the system, and it does not affect the power scaling law.

Uplink Achievable Rate analysis of Massive MIMO Systems in Transmit-correlated Ricean Fading Environments

  • Yixin, Xu;Fulai, Liu;Zixuan, Zhang;Zhenxing, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.261-279
    • /
    • 2023
  • In this article, the uplink achievable rate is investigated for massive multiple-input multiple-output (MIMO) under correlated Ricean fading channel, where each base station (BS) and user are both deployed multiple antennas. Considering the availability of prior knowledge at BS, two different channel estimation approaches are adopted with and without prior knowledge. Based on these channel estimations, a two-layer decoding scheme is adopted with maximum ratio precoding as the first layer decoder and optimal second layer precoding in the second layer. Based on two aforementioned channel estimations and two-layer decoding scheme, the exact closed form expressions for uplink achievable rates are computed with and without prior knowledge, respectively. These derived expressions enable us to analyze the impacts of line-of-sight (LoS) component, two-layer decoding, data transmit power, pilot contamination, and spatially correlated Ricean fading. Then, numerical results illustrate that the system with spatially correlated Ricean fading channel is superior in terms of uplink achievable rate. Besides, it reveals that compared with the single-layer decoding, the two-layer decoding scheme can significantly improve the uplink achievable rate performance.

Time-reversal Channel Capacity in Rayleigh and Ricean Environment (Rayleigh와 Ricean 채널 환경에서 동작하는 시역전 통신 채널 용량)

  • Koh, Il-Suek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.243-250
    • /
    • 2009
  • In this paper, a closed-form expression of the ergodic channel capacity for a narrow-band time-reversal communication scheme is analytically formulated. In the time-reversal communication scenario, a transmitter sends a signal and a so-called time-reversal array receives the signal. Then, the received signal is reversed in the time do main and resent to the original transmitter. Here, one transmitter and an antenna array for the time-reversal array are assumed. Since the spacing between the array elements is large, the signals received by each antenna element can be considered independent. For simplicity, the communication channel is assumed stationary, whose properties are not changed for the time-reversal process. Based on the obtained formulation, the channel capacities for the time-reversal and the conventional channels are compared.

Performance Analysis of Space-time Coded MIMO System with Discrete-rate Adaptive Modulation in Ricean Fading Channels

  • Yu, Xiangbin;Rui, Yun;Yin, Xin;Chen, Xiaomin;Li, Mingqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2493-2508
    • /
    • 2012
  • The performance of a MIMO system with adaptive modulation (AM) and space-time coding over Ricean fading channels for perfect and imperfect channel state information (CSI) is presented. The fading gain value is partitioned into a number of regions by which the modulation is adapted according to the region the fading gain falls in. Under a target bit error rate (BER) constraint, the switching thresholds for AM are given. Based on these results, we derive the calculation formulae of the theoretical spectrum efficiency (SE) and average BER. As a result, closed-form SE expression and accurate BER expression are respectively obtained. Besides, using the approximation of complementary error function, a tightly closed-form approximation of average BER is also derived to simplify the calculation of accurate theoretical BER. Computer simulation shows that the theoretical SE and BER are in good agreement with the corresponding simulation, and the approximate BER is also close to the accurate one. The results show that the AM scheme in Ricean fading channel provides better SE than that in Rayleigh fading channel due to the direct-path propagation, and has performance degradation in SE and BER for imperfect CSI.

Spatial Characteristics of Time-Reversal Pulse in Rayleigh and Ricean Fading Channels (레일레이 및 라이시안 페이딩 채널 환경 내의 시역전 펄스의 공간 특성)

  • Yoo, Hyung-Ha;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.648-656
    • /
    • 2009
  • We perform an analysis of the characteristics of the time-reversal pulse in Rayleigh or Ricean fading channel environments. We verify it by using Monte Carlo simulation. In a time-reversal system, each antenna in the time-reversal array receives signals from the transmitter and reverse the received signal in the time axis and then resend it to the original transmitter. We assume that the channel characteristics varies very slowly and the spatial separation between the antennas is not large. Hence the signals received by each antenna are correlated. In this paper, the effect of the correlation on the time-reversed pulse is examined, which includes the spatial properties of the time-reversal pulse such as the focus size, and spatial power distribution.

An Adaptive Beamforming Algorithm for Smart Antenna Applied to an MC-CDMA System with co-channel Interference in Ricean fading channel

  • Tuan, Le-Minh;Su, Pham-Van;Kim, Jewoo;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.311-316
    • /
    • 2002
  • In this paper, an adaptive beamforming algorithm, based on the Minimum Mean Squared Error (MMSE) criterion, is devised fer adaptive antenna applied to an MC-CDMA system. A new method for updating the weight vector is derived. Computer simulations show that proposed algorithm is capable of rejecting co-channel interference that affects the MC-CDMA system. Thus, the BER performance of the MC-CDMA system is improved compared with that of the MC-CDMA system without using adaptive antenna and that of the DS-CDMA system with adaptive antenna in multi-path Ricean fading channel.

  • PDF

Performance Evaluation of a Next Generation European Digital Terrestrial Television Broadcasting System(DVB-T2) (차세대 유럽형 디지털 지상파 방송 시스템 성능 분석)

  • Jeon, Eun-Sung;Seo, Jung-Wook;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.61-68
    • /
    • 2011
  • DVB-T2 system developed by DVB project is the next generation digital terrestrial television broadcasting standard designed for offering HDTV service in a post-Analog Switch Off (AOS) environment. In this paper, the performance of DVB-T2 is evaluated with the help of computer simulation. The bits error rate(BER) performance is studied in both AWGN, Rayleigh, Ricean and 0db-echo channel. Firstly, we will give a brief introduction to DVB-T2 system and then compare its BER performance to that of Implementation Guideline.

Optimum Power Allocation for Distributed Antenna Systems with Large Scale Fading-only Feedback (Large Scale Fading값만을 피드백하는 분산 안테나 시스템을 위한 최적 전력 할당)

  • Lim, Dong-Ho;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.635-642
    • /
    • 2008
  • We propose the Optimum Power Allocation (OPA) scheme for Distributed Antenna Systems(DAS) in the time-varying Rayleigh fading channel. Recently, the OPA schemes which uses the Channel State Information (CSI) including a small scale (fast) fading have been proposed. However, the channel is changing vary fast over time due to small scale fading, therefore Bit Error Rate (BER) increases. Because of this reason, we derive the OPA for minimizing BER in DAS, which only uses a large scale fading to CSI and excepts a small scale fading. The simulation results show that the proposed OPA achieves better BER performance than conventional OPA considering a small scale fading in time-varying Rayleigh fading channel, and also has similar performance in Rayleigh flat-fading environment. The BER performance of proposed OPA which derived in Rayleigh fading channel is similar to minimum BER of Ricean fading channel which has small Line-of-Sight (LOS).

A DCF Throughput Analysis of the Ideal and Fading Channel in the Wireless LAN (무선 LAN에서 이상 및 페이딩 채널 환경의 DCF 처리율 비교 분석)

  • Lee, Yong-Sik;Lee, Ha-Cheol;Lee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.741-753
    • /
    • 2008
  • This paper explores the throughput performance of CSMA/CA-based DCF protocol over both ideal channels and fading channels with payload size at the MAC layer in the 802.11a wireless LAN. In the ideal channel, there are no errors and at the transmission cycle there is one and only one active station which always has a packet to send and other stations can only accept packets and provide acknowledgements. In the fading channel, bit errors appear in the channel randomly and the number of stations is assumed to be fixed. And each station always has packets for transmission. In other words, we operate in saturation conditions. Up to now conventional research work about DCF throughput analysis of IEEE 802.11 a wireless LAN has been done over the ideal channel, but this paper is done over the Rayleigh/Ricean fading channel. So, the ratio of received average energy per bit-to-noise power spectral density $E_b/N_o$ is set to 25 dB and the ratio of direct-to-diffuse signal power in each sub-channel $\xi$ is set to 6 for combined Rayleigh/Ricean fading channel. In conclusion, it is shown that the saturation throughput is always less than the maximum throughput at all the payload size and the higher the transmission rate be, the higher the decreasing rate of saturation throughput compared to the maximum throughput be.