• 제목/요약/키워드: Rice straw of culture

검색결과 113건 처리시간 0.028초

Development of an Enrichment Culture Growing at Low Temperature used for Ensiling Rice Straw

  • Yang, Hong Yan;Wang, Xiao Fen;Gao, Li Juan;Haruta, Shin;Ishii, Masaharu;Igarashi, Yasuo;Cui, Zong Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.711-717
    • /
    • 2008
  • To speed up the conversion of rice straw into feeds in a low-temperature region, a start culture used for ensiling rice straw at low temperature was selected by continuous enrichment cultivation. During the selection, the microbial source for enrichment was rice straw and soil from two places in Northeast China. Lab-scale rice straw fermentation at $10^{\circ}C$ verified, compared with the commercial inoculant, that the selected start culture lowered the pH of the fermented rice straw more rapidly and produced more lactic acid. The results from denatured gradient gel eletrophoresis showed that the selected start culture could colonize into the rice straw fermentation system. To analyze the composition of the culture, a 16S rRNA gene clone library was constructed. Sequencing results showed that the culture mainly consisted of two bacterial species. One (A) belonged to Lactobacillus and another (B) belonged to Leuconostoc. To make clear the roles of composition microbes in the fermented system, quantitative PCR was used. For species A, the DNA mass increased continuously until sixteen days of the fermentation, which occupied 65%. For species B, the DNA mass amounted to 5.5% at six days of the fermentation, which was the maximum relative value during the fermentation. To the authors' best knowledge, this is the first report on ensiling rice straw with a selected starter at low temperature and investigation of the fermented characteristics.

Fungal Diversity of Rice Straw for Meju Fermentation

  • Kim, Dae-Ho;Kim, Seon-Hwa;Kwon, Soon-Wo;Lee, Jong-Kyu;Hong, Seung-Beom
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1654-1663
    • /
    • 2013
  • Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature ($15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at $15^{\circ}C$ and $25^{\circ}C$, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at $25^{\circ}C$ and $35^{\circ}C$. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well.

Butyric Acid Fermentation of Sodium Hydroxide Pretreated Rice Straw with Undefined Mixed Culture

  • Ai, Binling;Li, Jianzheng;Chi, Xue;Meng, Jia;Liu, Chong;Shi, En
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.629-638
    • /
    • 2014
  • This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at $50^{\circ}C$ for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

Degradation of Rice Straw by Rumen Fungi and Cellulolytic Bacteria through Mono-, Co- or Sequential- Cultures

  • Ha, J.K.;Lee, S.S.;Kim, S.W.;Han, In K.;Ushida, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.797-802
    • /
    • 2001
  • Two strains of rumen fungi (Piromyces rhizinflata B157, Orpinomyces joyonii SG4) and three strains of rumen cellulolytic bacteria (Ruminococcus albus B199, Ruminococcus flavefaciens FD1 and Fibrobacter succinogenes S85) were used as mono-cultures or combinationally arranged as co- and sequential-cultures to assess the relative contributions and interactions between rumen fungi and cellulolytic bacteria on rice straw degradation. The rates of dry matter degradation of co-cultures were similar to those of corresponding bacterial mono-cultures. Compared to corresponding sequential-cultures, the degradation of rice straw was reduced in all co-cultures (P<0.01). Regardless of the microbial species, the cellulolytic bacteria seemed to inhibit the degradation of rice straw by rumen fungi. The high efficiency of fungal cellulolysis seems to affect bacterial degradation rates.

볏짚 조사료에 대한 효모 배양물 첨가가 반추위 소화율 및 섬유소 분해균의 군락 변화에 미치는 영향 (Effects of Yeast Culture Supplementation on Rice Straw Digestibility and Cellulolytic Bacterial Community in the Rumen)

  • 성하균
    • Journal of Animal Science and Technology
    • /
    • 제55권1호
    • /
    • pp.41-49
    • /
    • 2013
  • 본 연구는 효모(Saccharomyces cerevisiae)가 조사료의 반추위 미생물 분해 및 섬유소 분해 박테리아의 군집 변화에 미치는 관계를 검증하고자, 생효모 배양물 첨가 및 급여가 볏짚 소화율에 미치는 영향을 in vitro 및 in situ 실험을 통해 측정하였고, 볏짚 분해 시 볏짚 표면에 부착한 섬유소분해 박테리아 군집의 변화를 real-time PCR 방법을 이용하여 비교 분석하였다. 생효모 배양물의 첨가 수준(0.0, 0.2, 0.4, 0.6, 0.8 및 1.0%)에 따른 볏짚의 in vitro 건물 소화율을 비교 하였을 때 첨가 수준이 증가 할수록 소화율도 점진적으로 높아 졌다. 특히, 생효모 배양물의 첨가 수준을 0.6% 이상으로 하였을 때 0.0, 0.2 및 0.4% 첨가보다도 확연한 소화율 증가를 보이기 시작하였다(p<0.05). 또한 효모배양물의 0.6% 첨가를 NaOH 4% 처리 볏짚 및 무처리 볏짚에 적용하여 소화율을 재평가하였을 때 두 가지 볏짚 모두에서 효모배양물 첨가에 의하여 볏짚 소화율이 유의적으로 증가하였다(p<0.05). 생효모 배양물을 한국재래산양에 실제 급여에 의한 볏짚의 in situ 건물소화율을 24 및 48 시간 후에 관측하였을 때 NaOH 무처리 볏짚의 효모배양물 비급여구의 소화율이 가장 낮았고, NaOH 무처리 볏짚의 효모배양물 급여구, 4% NaOH 처리 볏짚의 효모배양물 비급여구, 그리고 4% NaOH 처리 볏짚의 효모배양물 급여구 순으로 소화율이 유의적으로 각각 증가하였다(p<0.05). 이는 NaOH 무처리 볏짚 및 4% NaOH 처리 볏짚 모두에서 생효모 배양물 급여에 의하여 in situ 건물 소화율이 유의적으로 증가함을 보여준 것이다(p<0.05). 그리고 볏짚을 효모배양물의 두 가지 농도로 볏짚을 분무 처리하여 in situ 소화율과 볏짚 표면 부착 섬유소분해 박테리아(F. succiongenes, R. flavefaciens, R. albus)의 군집 변화를 측정하였을 때 효모배양물 처리 농도가 증가함에 따라 소화율도 유의적으로 높게 나타났고(p<0.05), 동시에 이들 박테리아의 볏짚 표면 부착 군집도 효모배양물의 처리 농도 증가에 따라 증가 하였다. F. succiongenes과 R. flavefaciens는 배양 12 및 24시간 모두 처리농도에 따라 군락의 수가 유의적으로 증가하였다(p<0.05). 그리고 R. albus도 배양 12 시간 처리농도에 따라 군락의 수가 유의적으로 증가하였고(p<0.05), 24 시간도 처리농도에 따라 증가 경향을 나타냈다. 따라서 본 연구는 효모 첨가는 조사료 소화율을 증진에 확실히 좋은 영향을 주며, 이것은 조사료 표면 부착 섬유소분해 박테리아의 군락 형성 증가에서 기인함을 보여준다고 사료된다.

Agronomic Characters and Soil Nitrogen Dynamics Influenced by Barley Straw Mulch Rates in No-Tillage Direct Seeding Rice Culture

  • Choi, Min-Gyu;Kang, Si-Yong;Kim, Sang-Su;Cheong, Jin-il;Shin, Hyun-Tak;Choi, Sun-Young
    • 한국작물학회지
    • /
    • 제44권3호
    • /
    • pp.191-196
    • /
    • 1999
  • In rice-barley cropping systems, efficient utilization of barley straw is essential, both to improve the soil fertility and to conserve the environment. In order to identify the effects of barley straw mulch rates in rice cultivation, a rice cultivar, 'Gancheogbyeo', was directly seeded on a no-tillage field synchronized with barley harvesting with five barley straw mulch rates, i.e., 0, 2.5, 5.0, 7.5 and 10.0 ton h $a^{-1}$ and agronomic characters of rice and soil nitrogen were determined. The increasing of barley straw mulch rates. Dominant weed species, chestnut, occurred in large amounts in no mulching or lower mulch rates than in higher mulch rates. The content of N $H_4$$_{+}$-N in soil applied with high barley straw mulch rates was lower during the month after seeding, and then it was higher at heading date, compared with lower mulch rates or no mulch plot. As the barley straw rate increased, maximum tillering stage was delayed, and plant height was reduced. Although the lodging of rice plants was seldom observed in all plots, the breaking strength of the culm was significantly higher in the mulch rate of 10.0 ton h $a^{-1}$ . With an increase of barley straw mulch rate, the effective tillering rate and spikelet number $m^{-2}$ decreased while ripened grain ratio increased. The rice grain yield was slightly decreased with an increase of barley straw mulch rate, although significant differences were not found all barley straw mulch rates. These results suggest that there is no significant yield loss although the total barley straw production, approximately 5.0 ton h $a^{-l}$ in the present study, apply in the paddy for the following rice cultivation by no-tillage direct seeding.ect seeding.

  • PDF

Bioconversion of Straw into Improved Fodder: Preliminary Treatment of Rice Straw Using Mechanical, Chemical and/or Gamma Irradiation

  • Helal, G.A.
    • Mycobiology
    • /
    • 제34권1호
    • /
    • pp.14-21
    • /
    • 2006
  • Crude protein (CP) content of mechanically ground rice straw into small particles by an electric grinder and reducing value (RV) and soluble protein (SP) in the culture filtrate were lower than that of the chopped straw into $5{\sim}6\;cm$ lengths when both ground and chopped straws were fermented with Aspergillus ochraceus, A. terreus or Trichoderma koningii, at steady conditions. The reduction rate of RV, SP and CP was 22.2, 2.4, 7.3%; 9.1, 4.9, 8.5% or 0.0, 0.0, 3.6% for the three fungi, respectively. Chemical pretreatment of straw by soaking in $NH_{4}OH$ for a day caused significant increase in CP of the fermented straw than the other alkali and acidic pretreatments. Gamma irradiation pretreatment of dry and wet straw with water, specially at higher doses, 100, 200 or 500 kGy, caused significant increase in RV and SP as CP in the fermented straw by any of these fungi. Chemical-physical combination pretreatment of rice straw reduced the applied dose of gamma irradiation required for increasing fermentable ability of fungi from 500 kGy to 10 kGy with approximately the same results. Significant increases in RV and SP of fermented straw generally occurred as the dose of gamma irradiation for pretreated straw, which combined with $NH_{4}OH$, gradually rose. Whereas, the increase percentage in CP of fermented straw that was pretreated by $NH_{4}OH-10\;kGy$ was 12.4%, 15.4% or 8.6% for A. ochraceus, A. terreus or T. koningii, respectively.

Influence of Monensin and Virginiamycin on In Vitro Ruminal Fermentation of Ammoniated Rice Straw

  • Kook, K.;Sun, S.S.;Yang, C.J.;Myung, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.544-547
    • /
    • 1999
  • The object of this study was to determine the influence of monensin and virginiamycin (VM) on in vitro ruminal fermentation of rice straw or ammoniated rice straw. Rumen fluid was collected from 4 wethers fed 200 g of concentrate supplement with 400 g of untreated (U) or ammoniated (A) rice straw once daily for 28 days. Mixed ruminal microorganisms were incubated in anaerobic media that contained 20% (vol/vol) ruminal fluid and 0.3 g of either U or A rice straw. Monensin and/or VM, dissolved in ethanol, were added in centrifuge tubes at final concentrations of 0, 15, 30, 15+15 and 30+30 ppm of culture fluid. The addition of monensin and VM combination to A rice straw fermentation decreased (p<0.05) the acetate to propionate ratio, total VFA and lactate production, but increased (p<0.05) pH. Total gas production tended to be decreased by the addition of monensin plus VM. Antimicrobial agents decreased $NH_3$ N concentration and dry matter digestibility.

벼 무경운재배시 볏짚과 둑새풀 고사체 피복이 벼와 논잡초의 생육에 미치는 영향 (Effect of Rice-straw and Dead Waterfoxtail Mulch on Growth of Rice and Paddy Weeds in No-tillage Rice Cultivation)

  • 채제천;전대경;김대욱
    • 한국잡초학회지
    • /
    • 제18권3호
    • /
    • pp.191-196
    • /
    • 1998
  • 벼 무경운재배시 수확 잔재인 볏짚과 비선택성 제초제 처리로 고사한 둑새풀이 논토양을 피복할 때 이들이 잡초 발아 및 벼의 입모와 초기생육에 미치는 영향을 알기 위하여 1998년 Pot실험한 결과를 요약하면 다음과 같다. 1. 볏짚 + 둑새풀 피복구의 입모율은 56.9%로서 볏짚피복구의 79.2%, 무피복구의 80.6%에 비하여 유의하게 낮았다. 2. 볏짚 및 볏짚+둑새풀 고사체 피복은 무경운 직파벼의 초기분얼을 현저히 억제하였다. 그러나 분얼성기 이후에는 생육을 유의하게 증진시켰다. 3. 볏짚단독피복, 볏짚+둑새풀 고사체 피복은 무경운직파재배에서의 잡초발생을 유의하게 감소시켰다. 피의 방제가는 볏짚피복구가 98.5%, 볏짚+둑새풀 고사체피복구에서는 76.1%이었다. 4. 볏짚피복과 볏짚 + 둑새풀 고사체 피복은 담수 후 20일간 수중 pH와 용존산소량을 유의하게 낮추었다. 5. 볏짚 및 볏짚+둑새풀 고사체 피복은 무경운 직파구의 지온을 직파 5일간은 $1^{\circ}C$ 낮추었다가 9일 이후에는 오히려 $1^{\circ}C$ 정도 높였다.

  • PDF

Bioconversion of Straw Into Improved Fodder: Mycoprotein Production and Cellulolytic Acivity of Rice Straw Decomposing Fungi

  • Helal, G.A.
    • Mycobiology
    • /
    • 제33권2호
    • /
    • pp.90-96
    • /
    • 2005
  • Sixty two out of the sixty four species of fungal isolates tested could produce both $exo-{\beta}1,4-gluconase\;(C_1)$ and $endo-{\beta}1,4-gluconase\;(C_x)$ on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at $25^{\circ}C$ and at $45^{\circ}C$, respectively. Eleven species could grow at both $25^{\circ}C$ and $45^{\circ}C$ while, four species appeared only at $45^{\circ}C$. The most cellulolytic species at $25^{\circ}C$ was Trichoderma koningii producing 1.164 $C_1$ (mg glucose/1 ml culture filtrate/1 hr) and 2.690 $C_x$ on pure cellulose, and 0.889 $C_1$, and 1.810 $C_x$ on rice straw, respectively. At $45^{\circ}C$, the most active thermotolerant species were Aspergillus terreus, followed by A. fumigatus. Talaromyces thermophilus was the highest active thermophilic species followed by Malbranchea sulfurea. Most of these species were also active in fermentation of rice straw at 25 and $45^{\circ}C$ (P<0.05). The most active ones were T. koningii, A. ochraceus and A. terreus, which produced 201.5, 193.1 and 188.1 mg crude protein/g dry straw, respectively.