• Title/Summary/Keyword: Rice planting

Search Result 329, Processing Time 0.023 seconds

Effect of Planting Density and Nitrogen Level on Growth and Yield in Heavy Panicle Weight Type of Japonica Rice

  • Kim, Bo-Kyeong;Kim, Hyun-Ho;Ko, Jae-Kwon;Shin, Hyun-Tak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • To investigate the effects of planting density and nitrogen level on growth and yield potential of newly bred heavy panicle japonica rice with large grain (Iksan 435 and Iksan 438) or many spikelets per panicle(HR14022-21-8-4 and HR14022-21-8-6), four heavy panicle type rices and two many panicle type rices(Dongjinbyeo and Donganbyeo) as the checks were planted under standard planting density (30$\times$15 cm) and dense planting density (15$\times$15 cm) with two nitrogen levels of standard nitrogen level(110 kg h $a^{-1}$) and heavy nitrogen level(165 kg h $a^{-1}$). Effective tiller rate decreased in dense planting or heavy nitrogen, when compared to standard nitrogen and planting, while leaf area index and to dry weight increased in dense planting or heavy nitrogen. Tiller numbers and panicle numbers were more increased by dense planting than heavy nitrogen, whereas spikelet numbers were more increased by heavy nitrogen than dense planting. Ripened grain ratio was slightly lower only in dense planting. 1,000 grain weight in brown rice was not significantly different in dense planting or heavy nitrogen. Milled rice yield was highest in heavy nitrogen with standard planting for heavy panicle type rice, while yield for many panicle type rice was highest in heavy nitrogen with dense planting, suggesting that many panicle type rice possesses higher adapt-ability for dense planting than heavy panicle type rice. Path coefficient analysis revealed that top dry weight, spikelet number and grain weight were the greatest positive contributors to yield, whereas tiller number was negative to yield.d.

  • PDF

Impacts of Planting Density on Nutrients Uptake by System of Rice Intensification under No-tillage Paddy in Korea

  • Meas, Vannak;Shon, Daniel;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • The System of Rice Intensification (SRI) is a new concept of increasing the yield of rice produced in farming. Therefore, we investigated the impacts of planting density on nutrient uptake as affected by SRI under no-till cropping system. The field was prepared as a randomized complete block design with three treatments: $10{\times}10$ cm, $20{\times}20$ cm and $30{\times}30$ cm planting densities. The root dry mass was significantly increased in the wider planting densities (p<0.05%). The highest grain yield was obtained in $20{\times}20$ cm planting density plot (p<0.05%) due to higher plant density per unit area and spikelets number per panicle. The total uptake amounts by rice plant were significantly higher in $20{\times}$20 cm planting density plot as 94.8 kg $ha^{-1}$ for T-N and 29.9 kg $ha^{-1}$ for P than other planting densities plots, but K and Mg uptake were significantly higher in $10{\times}10$ cm planting density plot (p<0.05%). In this study, our findings suggest that SRI should be considered as a new practice for the rice productivity.

Analysis of the Axle Load of a Rice Transplanter According to Gear Selection

  • Siddique, Md Abu Ayub;Kim, Wan Soo;Baek, Seung Yun;Kim, Yong Joo;Park, Seong Un;Choi, Chang Hyun;Choi, Young Soo
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.125-132
    • /
    • 2020
  • The objective of this study was to analyze the axle load of a rice transplanter when planting rice seedlings at different working load conditions to select a suitable gear stage and a constant planting depth for rice seedlings. In this study, there are four levels of planting distances (26, 35, 43, and 80 cm) and three planting depths (low, medium, and high) with two gear stages (1.3 and 1.7 m/s). Axle loads and required planting pressures were analyzed statistically. It was observed that axle torques were increased with increasing planting depths for both gear stages, meaning that axle torques were directly proportional to planting depths for both gear stages. It was also observed that required planting pressures had a significant difference between planting distances. Planting pressures also showed significant difference according to gear stage and planting depth. These results indicate that planting pressures were directly proportional to both gear stage and planting depth. Results revealed that the automatic depth control system of a rice transplanter could not guarantee a constant planting depth as supplied pressures were variable. This indicates that a control algorithm is needed to ensure a constant planting depth. In the future, a control algorithm will be developed for an automatic depth control system of a rice transplanter to improve its comprehensive performance and efficiency.

Development of An Impact-Type Seed-Metering Device for Rice-Seed Pellets (벼 펠렛 종자용 타격식 파종장치 개발)

  • 최영수;구경본;유수남
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • An impact-type seed-metering device was developed for the planting of rice-pellets. In this study, new design of pellet-metering device focused on simplicity and precision seeding for the planting of rice-seed pellets. In addition of seed-metering device, several devices were also developed such as seed-guiding device, seed-supplying tube and furrow opener for precision pellet planting. Field test was conducted to estimate the planting performance of the developed metering device. As a cam rotates, the impact bar of the metering device pushes a rice-seed pellet so that the seed can be discharged from the seed-supplying tube in the impact-type seed-metering device. Results of the tests showed that mean seeding spacing was 12cm at the traveling speed of 1.0m/s, corresponding to a target spacing for planting of rice-seed pellets. Also, both miss-seeded rate and damaged-seed rate were less than 2.0%, indicating acceptable levels for the precision planting. The developed mechanism of the impact-type metering device can be directly applied to the design of metering devices for the precision pellet planting of other crops.

  • PDF

Development of a Precision Seed Metering Device for Direct Seeding of Rice (벼 직파용 정밀 배종장치 개발)

  • Yoo S. N.;Choi Y. S.;Suh S. R.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.261-267
    • /
    • 2005
  • In order to save labor and cost, direct seeding has been considered as an important alternative to the machine transplanting in rice cultivation. As current seeders for direct seeding of rice seeds drill irregular amount of seeds under various operating conditions, conventional drilling should be turned to precision planting which enables accurate placement of proper amount of rice seeds at equal intervals within rows. In this study, design, construction and performance evaluation of a precision seed metering device for planting of rice seeds were carried out. As prototype, the conventional roller type seed metering device was modified for planting: increasing diameter of metering roller, setting 2 or 4 seed cells on metering roller, adding seed discharging lid and its driving cam mechanism. Through performance tests for prototype and the current seed metering device, number of seeds in a hill, planting space and its error ratio, coefficient of variation of planting space (planting accuracy), and seeding length of $90\%$ of seeds in a hill divided by planting space (planting precision) at setting planting spaces of 15, and 20cm, seeding heights of 10, and 20cm, and seeding speeds of 0.1, 0.2, and 0.5m/s were investigated. Prototype showed better seed planting performance than the current seed metering devices. When setting planting space of 15 cm and seeding height of 10cm, prototype with 2 seed cells showed that variations of planting space and seeding lengths of $90\%$ of seeds in a hill at up to seeding speed of 0.5m/s were within 0.9cm, and 3.6cm, respectively.

Evaluation of Sequential Planting Method for Screening of Durable Resistance against Rice Blast in Rice Breeding Program

  • Goh, Jaeduk;Kim, Byoung-Ryun;Shin, Dong Bum;Kang, In Jeong;Lee, Bong Choon;Kang, Hang-Won;Han, Seong-Sook
    • Research in Plant Disease
    • /
    • v.21 no.1
    • /
    • pp.20-23
    • /
    • 2015
  • A sequential planting method was developed to screen rice plants with durable resistance against rice blast in a short time, and applied for several years in Korean rice breeding program. In this study, we showed the advantages of a sequential planting method compared to other pathogenicity tests. The correlation analysis among three pathogenicity tests and other factors demonstrated that durable resistance depended on the average of diseased leaf area and the number of compatible pathogens. Significant correlations were found in the nursery test but not in the field test result. In addition, we traced changes in the pathogen population during sequential planting stages through re-isolation of the pathogen. The portion of compatible pathogens was increased during sequential planting. Through this study, we provide an effective sequential planting method and direction of durable resistance in a breeding program.

Effects on Rice Growth of System of Rice Intensification under No-till Paddy in Korea

  • Meas, Vannak;Shon, Daniel;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.91-97
    • /
    • 2011
  • The objectives of this research were to investigate the system of rice intensification (SRI) on early growth, grain yield, and yield components under Chinese milk vetch residue-mulched no-tillage cropping systems at silt loam soil. The field was prepared as a split-plot design with three replications, main plots consisted of Dongjinbyeo, and Sobibyeo as a cultivar, and subplots consisted of $10{\times}10$ cm, $20{\times}20$ cm, and $30{\times}30$ cm as a planting density. Weed infestation during rice growing season was more severe in wider planting density $30{\times}30$ at 35 days after transplanting (DAT), and $20{\times}20$ cm at 95 DAT in both Sobibyeo and Dongjinbyeo. The maximum plant height was recorded in Sobibyeo compared with Dongjinbyeo, $10{\times}10$ cm and $20{\times}20$ cm planting density compared with $30{\times}30$ cm from 20 DAT until 60 DAT. Among the three planting densities, SPAD values were significantly greater in planting density of $20{\times}20$ cm both in Sobibyeo and Dongjinbyeo followed by $30{\times}30$ cm compared with closer planting density of $10{\times}10$ cm. The lowest grain yield was observed in wider planting density of $30{\times}30$ in both Sobibyeo and Dongjinbyeo due to lower number of panicle per unit area. Our findings suggest that optimum planting density for SRI in no-tillage paddy was $20{\times}20$ cm and it should be useful the systems to small-scale rice farmers in Korea as a sustainable farming system.

Analysis of Transplanting Accuracy of Rice Transplanter for Low density Planting According to Transfer Distance to Seedling Tray (소식재배용 이앙기 모판 이송간격에 따른 이앙정확도 분석)

  • Won-Kyung Kim;Sang Hee Lee;Deok Gyu Choi;Seok Ho Park;Youn Koo Kang;Seok Pyo Moon;Chang Uk Cheon;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.30-35
    • /
    • 2024
  • Domestic rice is more expensive than imported products, so it is necessary to reduce production costs to secure competitiveness. Low-density planting developed in Japan is a cultivation technology that reduces labor and production costs without yield loss. The area of low-density cultivation is continuously increasing. However, research on how rice transplanters adapt to low-density planting has not been conducted. Therefore, this study was carried out to determine the optimal working conditions of a rice transplanter for low-density planting. Three types of rice transplanters were used and treated based on 3 conveying distance levels. The number of picked seedlings, pick missing rate, the number of planted seedlings, and the mis-planted rate were investigated to evaluate planting accuracy according to the transfer distance to the seedling tray. The results showed that the number of planted seedlings was 4.31~4.95 EA with an L1 seedling tray transfer distance (horizontal 9 mm, vertical 8 mm), but the mis-planted rate was higher than in other conditions. At L2 (horizontal 9 mm, vertical 10 mm) and L3 (horizontal 11 mm, vertical 8 mm) transfer distance conditions, the number of planted seedlings were 4.89-5.68 EA and 4.69-5.66 EA, respectively, with a low mis-planted rate of less than 3%. The results showed that if the transfer distance is adjusted properly, a rice transplanter can be used for low-density planting with high planting accuracy.

ACCURATE SYNTHESIS OF SEEDLING SEPARATING-PLANTING MECHANISM OF RICE TRANSPLANTER

  • Hu, Hanxiang;Chen, Dejun;Wang, Changbing;Li, Zhenyong;Wu, Jienian;Xu, Jinda
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.284-290
    • /
    • 1993
  • In order to improve the adaptability of rice transplanter to seeding with different length when transplanting multicropping rice in south China. The seedling separating planting mechanism is resynthesized in the paper. According to the agronomy requirements of seedling's transplanting, optimum motional path of the tip point of planting needle is obtained. by applying the established kinematic model of the separating planting mechanism, the relevant software is compiled. On the basis of the features of the problem, the constrained optimization method is utilized to solve the problem with 24 restrictions. Thus, the optimum structure parameters are obtained to satisfy the path points accurately.

  • PDF

Optimum Planting Density in Low Fertilizing Culture of Machine Transplanting in Rice (벼 기계이앙 소비재배시 적정 재식밀도 구명)

  • Choi Weon-Young;Moon Sang-Hoon;Park Hong-Kyu;Choi Min-Gyu;Kim Sang-Su;Kim Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2006
  • This experiment was carried out to investigate the optimum planting density in low fertilizing cultivation of machine transplanting in rice field of Honam Agricultural Research Institute, NICS for $2004{\sim}2005$. Sobibyeo which belongs to medium maturing variety and Nampyeongbyeo which belongs to medium-late maturing variety were transplanted on May 30. In this experiment, there was no significant difference in heading date between planting density and nitrogen fertilization rate, and heading dates were August 8 in Sobibyeo, and August 14 in Nampyeongbyeo respectively. In relation to lodging character, lodging Index was high where the nitrogen fertilization rate and planting density were high. As planting density increases, panicle number per $m^{2}$ increased irrespective of nitrogen fertilization rate. When nitrogen was 6 kg/10a, rice yield of Sobibyeo was more where planting density was 90 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 80 hill per $3.3m^{2}$. When nitrogen was 9 kg/10a, rice yield of Sobibyeo was more where planting density was 100 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 110 hill per $3.3m^{2}$. Head rice rate of brown rice was higher when planting density increased, and was higher at 6 kg/10a nitrogen rate than 9 kg/10a nitrogen rate in all varieties.