• Title/Summary/Keyword: Rice husk in Korea

Search Result 68, Processing Time 0.02 seconds

Study of Rice Husk Pulping for utilization of Rice Husk Fiber (왕겨섬유 활용을 위한 왕겨 펄프화 연구)

  • Oh, Min-Taek;Sun, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.63-69
    • /
    • 2012
  • The rice husk is one of the major agricultural residue in KOREA. In this paper, the effects of various pulping conditions on the properties of rice husk pulp and handsheets made of rice husk fiber were evaluated in order to utilize the rice husk as an alternative source for wood pulp. Two typical alkali pulping, such as soda pulping and Kraft pulping were applied with various conditions of the pulping processes. The higher effective alkali and higher pulping temperature resulted in the higher efficiency in removal of lignin and ash, which leaded to the higher strength properties of handsheets made of rice husk fiber, but the lower yield of rice husk pulp. The better efficiency in production of rice husk pulp and the stronger handsheets were obtained by the Kraft pulping.

Chemical Compositions and Thermal Characteristics of Rice Husk and Rice Husk Ash in Korea (왕겨 및 왕겨재의 화학적 조성 성분과 열적 특성)

  • Park S. J.;Kim M. H.;Shin H. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.235-241
    • /
    • 2005
  • For better and large utilization of rice husk, the production and consumption status, differences in chemical composition and heating value due to region and variety, and thermogravimetric characteristic of rice husk were studied. In addition, the differences in chemical composition due to region and variety and the crystallization characteristic of rice husk ash were also studied. Approximately 800,000 M/T of rice husk was produced per year in Korea, which is about $18\%$ of the paddy production by weight. Noticeable varietal and regional difference pattern in chemical composition was not found among the domestic rice husk samples. Their average ash content and higher heating value were $16.4\%$ and 16,660 kJ/kg by dry basis, respectively. A relation seemed to exist between the carbon content and higher heating value. Noticeable difference pattern in chemical composition was not found among the domestic rice husk ash samples. The $SiO_2$ contents were a little low, the maximum being $92.9\%,$ and the contents of major components such as CaO, MgO, and $K_2O$ were also lower compared with foreign rice husk ash due to the deficiency of compost matters in domestic soils. Thermogravimetry study showed the thermal decomposition of rice husk started at about $250^{\circ}C,$ followed by relatively fast combustion of combustible gas until the temperature rose to $350^{\circ}C.$ After $350^{\circ}C,$ combustion of the carbon component proceeded relatively slowly as the temperature increased. Therefore, the ignition temperature of the rice husk could be estimated around $300^{\circ}C$. Crystallization of $SiO_2$ in the rice husk ash was found from the combustion temperature of $750^{\circ}C$ and became distinctly when the combustion temperature exceeded $900^{\circ}C$. The ash became darker with $SiO_2$ crystallization.

Manufacturing and Characterization of Pulp Mold with Rice Husk Fiber (왕겨섬유를 포함한 펄프몰드 제조 및 특성 평가)

  • Kim, Hyung Min;Sung, Yong Joo;Park, Young Seok;Shin, Jea Chul
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • The applicability of rice husk fiber as a raw material for eco-friendly pulp mold was evaluated in this study. The higher demand of environmental friendly packaging material resulted in the more interest for the natural fiber based pulp mold. The rice husk which is an abundant agricultural byproduct in Asia could be defiberized by an alkaline digestion process. The changes in the pulp mold making process and the properties of pulp mold by the addition of the rice husk were investigated. The addition of rice husk fiber to the pulp mold made with OCC or UBKP resulted in the increase in drainage at the pulp mold forming process. In case of UBKP pulp mold, the addition of rice husk fiber increased the drying efficiency after pulp mold forming since the structure of pulp mold became more bulkier by the addition of the rice husk fiber. Those results showed the rice husk fiber could be applied to the pulp mold manufacturing as one of the eco-friendly natural fiber resources.

Developmemt of Rice Husk Pellets as Bio-filter Media of Bio Scrubber Odor Removal System (왕겨펠렛 생물담체 개발 및 이를 이용한 bio scrubber형 악취제거 시스템 성능평가)

  • Bae, Jiyeol;Han, Sangjong;Park, Ki Ho;Kim, Kwang-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.554-566
    • /
    • 2018
  • The rice husk contains nutrients which can be easily utilized by microorganisms, and also has a water retaining ability, which played a crucial part in enabling it to become a biofilter media. In this study, we evaluated the applicability of rice husk pellet bio-scrubber as a microbiological carrier. The pelletization experiment of rice husk as a biological media was performed using PVA and EVA binder. Also, the feasibility tests of rice husk as a biological media for odor removal were carried out in order to know whether rice-husk contains useful components as a media for microbiological growth or not. Lastly, a combined test for odor gas absorption and biological oxidation was conducted using a lab scale bio-filter set-up packed with rice-husk pellets as wet-scrubber. The major components of the rice husk were carbon, hydrogen, nitrogen, and oxygen, while carbon acted as the main ingredient which comprised up to 23.00%. The C : N : P ratio was calculated as 45 : 1 : 2. Oxygen uptake rate, yield and decay rate of the rice husk eluent was calculated to be $0.0049mgO_2/L/sec$, 0.24 mgSS/mgCOD and 0.004 respectively. The most stable form of rice husk pellets was produced when the weight of the rice husk, EVAc, PVAc, and distilled water was 10 : 2 : 0.2 : 10. The prepared rice husk pellets had an apparent density of 368 g/L and a porosity of 59.00% upon filling. Dry rice husks showed high adsorption capacity for ammonia gas but low adsorption capacity for hydrogen sulfide. The bio-filter odor removal column filled with rice husk pellets showed more than 99.50% removal efficiency for NH3 and H2S gas. Through the analysis of circulation water, the prime removal mechanism is assumed to be the dissolution by water, microbial nitrification, and sulfation. Finally, it was confirmed that the microorganisms could survive well on the rice husk pellets, which provided them a stable supply of nutrients for their activity in this long-term experiment. This adequate supply of nutrients from the rice husk enabled high removal efficiency by the microorganisms.

Flow Behavior and Mixing Characteristics of Rice Husk/Silica Sand/Rice Husk Ash (왕겨/모래/왕겨 회재의 유동 및 혼합 특성 연구)

  • Kim, Bo Hwa;Seo, Myung Won;Kook, Jin Woo;Choi, Hee Mang;Ra, Ho Won;Yoon, Sang Jun;Mun, Tae Young;Kim, Yong Ku;Lee, Jae Goo;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.533-542
    • /
    • 2016
  • We investigate fluidization characteristics of the mixture of rice husk, silica sand and rice husk ash as a preliminary study for valuable utilization of rice husk ash obtained from gasification of rice husk in a fluidized bed reactor. As experiment valuables, the blending ratio of rice husk and sand (rice husk: sand) is selected as 5:95, 10:90, 20:80 and 30:70 on a volume base. Rice husk ash was added with 6 vol% of rice husk for each experiment and air velocity to the reactor was 0~0.63 m/s. In both rice husk/sand and rice husk/sand/ash mixture, the minimum fluidization velocity (Umf) is observed as 0.19~0.21 m/s at feeding of 0~10 vol.% of rice husk and 0.30 m/s at feeding of 20 vol.% of rice husk. With increasing the amount of rice husk up to 30 vol.%, $U_{mf}$ can not measure due to segregation behavior. The mixing index for each experiment is determined using mixing index equation proposed by Brereton and Grace. The mixing index of the mixture of rice husk/sand and rice husk/sand/ash was 0.8~1 and 0.88~1, respectively. The optimum fluidization condition was found for the good mixing and separation of rice husk ash.

Exploiting the Potentials of Rice Husk Ash as Supplement in Cement for Construction in Nigeria

  • Akindahunsi, Akindehinde Ayotunde;Alade, Oluwotosin
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.3-8
    • /
    • 2010
  • This paper present the results of investigation on the use of rice husk ash as a partial substitute for cement in construction. One hundred and eighty specimens of concrete cubes were cast. 0, 5, 10, 15, and 20% partial replacement of cement with rice husk ash were carried at 1:2:4 mixes by weight with 0.60, 0.65, 0.70 water/cement ratio. The results indicated that compressive strengths of cubes at 0.6, water/cement were higher than 0.65 and 0.70. Also 5% partial replacement cement with rice husk ash at $28^{th}$ day average compressive strength value of $25.4\;N/mm^2$ compared well with 0% partial replacement of cement with rice husk ash of $26.28\;N/mm^2$. This shows that at 5% partial replacement of cement with rice husk ash can be used for structural concrete and at 15% replacement or more it can be used for non - structural construction works or light weight concrete construction. The cost analysis shows substantial amount of savings for the country.

Production of Carbonized Rice Husk by a Cyclone Combustor (III) (사이클론 연소기를 이용한 탄화왕겨의 제조 (III))

  • 김원태;노수영
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.187-194
    • /
    • 2000
  • One of effective utilization technique of rice husk is known to carbonize it for using as the culture materials. A series of study on the production of carbonized rice husk by a cyclone combustor shows that the carbonized rice husk produced have a strong alkalinity. Therefore, carbonized rice husk produced by a cyclone combustor is required to neutralize with proper normality. This work is the third part of a series on the production of carbonized rice husk by a cyclone combustor. In this work, the development of neutralization process was carried out in the range of experimental conditions recommended in the previous study. Those include the preheat temperature of combustion chamber of T1b=1273∼1373K, equivalence ratio =1.68∼2.17, auxiliary gas flow rates Qg=5.15∼6.43$\ell$/min. The injection technique of dilute acid was employed for neutralization. At the lower position of the outside of combustor, a dilute nitric acid selected as neutralization liquid was injected to the carbonized rice husk exhausted from the combustion chamber. The normalities of dilute nitric acid were varied to 0.01, 0.03 and 0.05N, respectively. The injection flow rates of the solution were changes from 1.7∼4$\ell$/min. The required carbonized and neutralized rice husk could be obtained at the dilute nitric acid with normality of 0.3N and flow rate of dilute nitric acid of 2∼3.5$\ell$/min. However, the carbonized and neutralized rice husks of about 10∼20% were destroyed by spray with high injection pressure.

  • PDF

Properties of Hanji Wallpaper by Incorporating Ceramics from Wood and Rice-husk (톱밥과 왕겨로 제조된 세라믹을 첨가한 한지벽지의 물성)

  • Lim, Hyun-A;Oh, Seung-Won;Kang, Jin-Ha
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This study was carried out to explore a new application of traditional Hanji and obtain fundamental properties for producing Hanji wallpaper by incorporating ceramics from wood and rice-husk as an interior building material. The results of properties determined were summarized as follows: The addition of ceramics in Hanji paper reduced its apparent density, but increased bulk density due to the ceramic particles distributed on the surface and inside the fiber of Hanji wallpapers. In particular, woodceramic particles were specifically distributed on the fiber surface, while particles of rice-husk ceramics were permeated into the inside surface of fibers. The density of rice-husk ceramics were greater than that of woodceramics. The physical properties of Hanji wallpapers, such as breaking strength, wet breaking strength, burst strength, tear index and folding endurance were deteriorated with the addition of ceramics. However, the addition of woodceramics in the Hanji wallpaper resulted in better strength in most cases than that of rice-husk ceramics, except tear strength. Therefore, an optimum addition level of woodceramics into the wallpaper was found to be 5% on the basis of intensity. The addition of ceramics also prolonged the combustion time because it lowered air permeability and brightness of the wallpaper.

  • PDF

Evaluation of Biological Activities of Rice Husk Extracts

  • Kim, Dae-Jung;Oh, Sea-Kwan;Chun, A-Reum;Yoon, Mi-Ra;Hong, Ha-Cheol;Choi, Im-Soo;Lee, Jun-Soo;Yu, Kwang-Won;Kim, Yeon-Kyu
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.179-183
    • /
    • 2011
  • This study was conducted to determine the biological activities of 70% ethanol extracts from rice husks of nine rice cultivars in Korea. The relative antioxidant activities of rice husk extracts were evaluated by determining DPPH, ABTS radical scavenging activity and reducing power. The contents of total polyphenol, flavonoid and r-oryzanol were measured by spectrophotometric methods. Among the extracts of rice husks, Nokmi rice husks tended to have the most effective antioxidant activities compared to other rice husk varieties. Seolgaeng rice husk extract showed anti-proliferative activity against cancer cell lines (MCF7 and NCI-H460), and Hongjinju rice husk extract significantly exhibited mitogenic activity.

Influence of different NaOH pretreatment concentrations on saccharification and fermentation for bioethanol production from rice straw and rice husk (natural and powder)

  • Yeasmin, Shabina;Kim, Chul-Hawn;Lee, J.Y.;Sheikh, M.I.;Park, H.J.;Kim, S.H.;Kim, G.C.;Kim, J.W
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.101-110
    • /
    • 2011
  • The experiment was conducted to evaluate the different NaOH pretreatment concentrations (0.25%, 0.50%, 0.75%, and 1.00%) on enzymatic saccharification (with cellulase, and ${\beta}$-glucosidase) and fermentation (by Saccharomyces cerevisiaeKCCM 11304) for bioethanol production from rice straw and rice husk. Pretreatment of rice straw and rice husk were conducted under both natural and powder state to observe the potentiality of the biomass condition (natural and powder state). In this study, glucose and ethanol production were increased with the increase of NaOH percentage for both rice straw and rice husk (natural and powder state). For rice straw, the highest amount of glucose was obtained in 1.00% NaOH pretreatment (0.81 g $g^{-1}$ in a natural, and 0.63 g $g^{-1}$ in a powder state pretreatment). Similarly, for rice husk, the highest amount of glucose was obtained in 1.00% NaOH pretreatment (0.47 g $g^{-1}$ in a natural, and 0.46 g $g^{-1}$ in a powder state pretreatment). However, 0.75% NaOH pretreatment resulted in glucose yield near about 1.00% NaOH pretreatment for both rice straw and rice husk (natural and powder state). On the other hand, for rice straw, the highest amount of ethanol was obtained in 1.00% NaOH pretreatment (0.36 g $g^{-1}$ in a natural, and 0.31 g $g^{-1}$ in a powder state pretreatment). In addition, for rice husk, the highest amount of ethanol was also obtained in 1.00% NaOH pretreatment (0.24 g $g^{-1}$ in a natural, and 0.23 g $g^{-1}$ in a powder state pretreatment). Moreover, 0.75% NaOH pretreatment resulted in ethanol yield near about 1.00% NaOH pretreatment for both rice straw and rice husk (natural and powder state). It was confirmed that higher amount of NaOH use is cost effective. Moreover, higher amount of glucose and ethanol was observed when powder was prepared after pretreatment. So 0.75% NaOH pretreatment in a natural state is supposed to be suitable for enzymatic saccharification and fermentation for bioethanol production.

  • PDF