• Title/Summary/Keyword: Rice cultivation

Search Result 1,335, Processing Time 0.043 seconds

Effects of Tillage and Cultivation Methods on Carbon Accumulation and Formation of Water-stable Aggregates at Different Soil Layer in Rice Paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shingu;Park, Jeong-Hwa;Hong, Sunha;Kim, Tae-su;Yang, Woonho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.634-643
    • /
    • 2017
  • No-tillage is an effective practice to save labor input and reduce methane emission from the paddy. Effects of tillage and cultivation methods on carbon accumulation and soil properties were investigated in the treatments of tillage-transplanting (T-T), tillage-wet hill seeding (T-WS), minimum tillage-dry seeding (MT-S) and no-tillage dry seeding (NT-S) of rice. Soil carbon was higher in NT-S and MT-S, compared to T-T and T-WS. In NT-S and MT-S, soil carbon contents were the highest in the top soil (5 cm depth) and decreased with soil depth. In T-T and T-WS, however soil carbon contents showed no significant difference up to soil depth of 15 cm from the top. Carbon content was the highest in the soil particle size under $106{\mu}m$ and decreased as the soil particle size increased. Contents of water-stable aggregates in NT-S and MT-S were higher than those of T-T and T-WS. In NT-S and MT-S, contents of water-stable aggregates were the highest in the top soil and significantly decreased with soil depth while no significant difference up to the soil depth of 15 cm in T-T and T-WS. Available $SiO_2$ contents in the top soil were the highest in NT-S and MT-S while the lowest in T-T and T-WS. It is concluded that minimum or no disturbance of soil in rice cultivation can increase carbon accumulation in the soil, especially in the top layer, and subsequently contribute to the formation of the water-stable soil aggregates.

Effect of Cattle-Manure Application on Soil Chemical Properties and Crop Yields in Rice-Forage Cropping System

  • Lee, Yejin;Yun, Hong-Bae;Sung, Jwa-Kyung;Ha, Sang-Keun;Song, Yo-Sung;Sonn, Yeon-Kyu;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.553-557
    • /
    • 2014
  • The steady increase in livestock industry has greatly required the stable production of food and forage crops. As an alternative, rice-forage cropping system has been attempted in several southern areas. The present study was performed to understand whether an application of cattle-manure compost affects soil chemical properties and crop productivity in rice-forage cropping system, rice ${\rightarrow}$ summer oat ${\rightarrow}$ rye, in Jangheong county, south Jeolla province from 2013 to 2014. Treatments was composed of control (no compost), CM1 (compost application before rice transplanting), and CM2 (two-times compost application, before rice transplanting and after rice harvest), and inorganic fertilizers (N, P, and K) were equally dressed in all plots. Yields of rice were not significantly different between treatments, however, oat production was 1.25-fold higher in CM1 and CM2. Nutrient uptake amounts of rye were higher in CM2 than CM1 and control. Total nitrogen in soil was maintained stable level during crop cultivation. And soil organic matter contents in all treatments were increased by crop residue. Available P_2O_5$ and exchangeable K were increased by cattle manure application. Therefore, it suggested that the amount of nutrient by forage crop residue should be considered in rice-forage multiple cultivation.

Agronomic Characters and Soil Nitrogen Dynamics Influenced by Barley Straw Mulch Rates in No-Tillage Direct Seeding Rice Culture

  • Choi, Min-Gyu;Kang, Si-Yong;Kim, Sang-Su;Cheong, Jin-il;Shin, Hyun-Tak;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.191-196
    • /
    • 1999
  • In rice-barley cropping systems, efficient utilization of barley straw is essential, both to improve the soil fertility and to conserve the environment. In order to identify the effects of barley straw mulch rates in rice cultivation, a rice cultivar, 'Gancheogbyeo', was directly seeded on a no-tillage field synchronized with barley harvesting with five barley straw mulch rates, i.e., 0, 2.5, 5.0, 7.5 and 10.0 ton h $a^{-1}$ and agronomic characters of rice and soil nitrogen were determined. The increasing of barley straw mulch rates. Dominant weed species, chestnut, occurred in large amounts in no mulching or lower mulch rates than in higher mulch rates. The content of N $H_4$$_{+}$-N in soil applied with high barley straw mulch rates was lower during the month after seeding, and then it was higher at heading date, compared with lower mulch rates or no mulch plot. As the barley straw rate increased, maximum tillering stage was delayed, and plant height was reduced. Although the lodging of rice plants was seldom observed in all plots, the breaking strength of the culm was significantly higher in the mulch rate of 10.0 ton h $a^{-1}$ . With an increase of barley straw mulch rate, the effective tillering rate and spikelet number $m^{-2}$ decreased while ripened grain ratio increased. The rice grain yield was slightly decreased with an increase of barley straw mulch rate, although significant differences were not found all barley straw mulch rates. These results suggest that there is no significant yield loss although the total barley straw production, approximately 5.0 ton h $a^{-l}$ in the present study, apply in the paddy for the following rice cultivation by no-tillage direct seeding.ect seeding.

  • PDF

Yield of Rice Affected by Meteorological Elements in Yeosu Area of Korea

  • Kwon, Byung-Sun;Choi, Seong-Kyu;Shin, Jeong-Sik;Shin, Jong-Sup;Shin, Dong-Young;Hyun, Kyu-Hwan;Kuk, Yong-In;Park, Hee-Jin
    • Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.134-139
    • /
    • 2003
  • This study was conducted to investigate the relationships between yearly variations of meteorological elements and yearly variations of productivity in rice. In addition, correlation coefficients among yield and yield components were used to find out the relationships between meteorological elements and productivity. Yearly variation of the mean air temperature in May was large with coefficients of variation(C.V.) of 25.0%, but the variation of the duration of sunshine in May were relative small. No. of panicles per hill and 1,000 grains wt. of brown rice were great with C.V. of 21.1, 19.7%, respectively, brown rice yield show more or less C.V. of 5.5% and milled rice show still less variation. Correlation coefficients between temperatures in period of cultivation from May and yield were positive correlations. Correlation Coefficients between precipitation in period of cultivation from Sep. to Oct. and yield are positive correlations. Correlation coefficients amount the panicle length, no. of panicles, no. of spikelets, ratio of ripened grains, 1,000 grains wt. of brown rice, milled rice yield, brown rice yield and milled rice yield were positively significant at the level of 1 %, respectively.

  • PDF

Uniform Seedling Establishment and Weed Occurrence Inhibition by Seed-Mulching in Wet Seeded Rice

  • Yang, Woon-Ho;Kim, Jae-Hyun;Kim, Je-Kyu;Han, Hee-Suk;Lee, Moon-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.2
    • /
    • pp.80-84
    • /
    • 2002
  • In spite of simple and cheap cultivation method, water broadcast-seeded rice demonstrates uneven and unstable seedling establishment per unit land area and requires more herbicide and labor-input for weed control. Three experiments were conducted in a phytotron at 18$^{\circ}C$ to evaluate the adaptability of seed-mat mulching cultivation technologies in water seeded rice for the uniform seedling establishment and the inhibition of weed occurrence without herbicide application. Five different kinds of mat with different mesh sizes and fabric properties were tested. The emergence of rice was the highest in Lawn-mat treatment, being comparable with the control, in which seeds were sown without mat. The Lawn-mat also exhibited the lowest mat tension. Mat tension may influence the emergence of rice. And once it was soaked in water, it didn't maintain its original shape any more. The emergence rate of rice was the lowest in Safer-mat treatment. In Lawn-mat treatment, which was the most effective for rice emergence in the first study, the differences of emergence and seedling establishment of rice depending on the seeding position (upper, beneath, and between mats) treatments were negligible, while they were higher in dry seeds than in pre-germinated seeds treatment. The emergence as affected by the kinds of mat also showed the same trend when tested using barnyard grass. Depending on the kinds of mat, the inhibition effect of weeds was the greatest in Safer-mat and the poorest in Lawn-mat. These results strongly suggest the possibility that the uniform seedling establishment and weed management without chemical could be achieved simultaneously by seed-mat mulching through the combination of effective mat for the emergence of rice and another efficient mat for the inhibition of weed occurrence. This possibility was also tested in the field.

Effects of Protox Herbicide Tolerance Rice Cultivation on Microbial Community in Paddy Soil (Protox 제초제저항성 벼 재배가 토양미생물 군집에 미치는 영향)

  • Oh, Sung-Dug;Ahn, Byung-Ohg;Kim, Min-Kyeong;Sohn, Soo-In;Ryu, Tae-Hun;Cho, Hyun-Suk;Kim, Chang-Gi;Back, Kyoung-Whan;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • BACKGROUND: Rice (Oryza sativa) is the most important staple food of over half the world's population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn't show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. CONCLUSION(S): These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.

Variation of Functional Materials and Antioxidant Activity as Affected by Cultivation Environment in Pigmented Rice Varieties (재배환경에 따른 유색미의 기능성물질 및 항산화활성 변이)

  • Oh, Sung Hwan;Choi, Kyung-Jin;Kim, Sang Yeol;Seo, Woo Duck;Han, Sang Ik;Cho, Jun Hyun;Song, You Chun;Nam, Min Hee;Lee, Chung Keun;Woo, Sunhee;Lee, Chulwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.153-166
    • /
    • 2015
  • Production of high quality pigmented rice contained with high content of anthocyanin, and polyphenol was significantly influenced by cultivation environments like transplanting date and cultivation location. This study was carried out to establish an optimum transplanting date and cultivation region to produce maximum content of anthocyanin, polyphenol and antioxidant activity of pigmented rice varieties (black, red colored). Three transplanting times (May 20, June 5, June 20) and four different sites (Miryang, Uiseong, Sangju, Bonghwa) were evaluated with five pigmented rice cultivars. Anthocyanin and total polyphenol index to average temperature during 30 days after heading (DAH) of black, red pigmented rice varieties showed that anthocyanin and total polyphenol contents were decreased by 10% and 9%, respectively, with increasing average temperature of $1^{\circ}C$. The optimum ripening temperature of the 30 DAH for the production of high anthocyanin and total polyphenol was 22 to $23^{\circ}C$ for early maturity black rice, 21 to $22^{\circ}C$ for mid-late maturity of black and red rices, respectively. On the other hand, an estimated heading date of pigmented rices in return according to the optimum ripening temperature of the 30 DAH was ranged Aug. 11 to 17 for early maturity black rice, Aug. 25 for mid-late maturity black, red rice variety in Jecheon, Aug. 27 to Sep. 2 for early maturity type, Sep. 3 to 6 for mid-late type in Daegu. It seemed that Jecheon, Boeun, Mungyeong, and Yeongju were optimum regions for cultivation of pigmented rices. The estimated sowing date of pigmented rices for high anthocyanin and total polyphenol production based on the optimum heading date was May 18 to 26 for early maturity black rice variety, April 11 for mid-late black, red variety in Jecheon, May 23 to 28 for early type, April 9 to 26 for mid-late type in Boeun, respectively.

Analysis of the Distribution of Rice Blast Pathogens in High-Altitude North Korea Border Areas and Domestic Rice Cultivars (고위도 북한 접경지역과 국내 벼도열병균 레이스 분포 분석)

  • Jung Wook Yang;Eun Young Kim;Jin Kyo Jung;In Jeong Kang;Yul Ho Kim;Boyng Joo Kim;Un Ho Yang;Sunggi Heu;Hyunjung Chung
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.243-250
    • /
    • 2023
  • To explore the distribution and the resistance reaction of rice blast pathogens that may occur in North Korea, rice blast pathogens in the North Korean border regions of Dandong and Yeon-gil in China and the North Korean border region of Cheorwon in South Korea were analyzed. In addition, comparative analysis was conducted with rice blast pathogen in Suwon and Jeonju, inland regions of South Korea. Resistance reactions above average were observed in monogenic rice lines (IRBLzt-T, IRBL9-W, IRBL20-IR24, and IRBLta-CP1) in Jeonju, Suwon, and Cheorwon from 2018 to 2020. In Dandong and Yeon-gil, the monogenic lines IRBLz5-CA, IRBL12-M, and IRBL19-A consistently showed resistance reactions for three years. Notably, IRBL19-A exhibited strong resistance. Race distribution analysis in South Korea indicated a shift from KI to KJ dominance from 2018 to 2020, while in the North Korean border regions of Dandong and Yeon-gil, the KI race was dominant in 2021 and 2022. The race distribution of rice blast pathogens in China's North Korean border regions differed significantly from that in South Korea.

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.