• 제목/요약/키워드: Ricci-Bourguignon solitons

검색결과 2건 처리시간 0.017초

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey;Young Jin Suh
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.341-358
    • /
    • 2023
  • Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.

RICCI 𝜌-SOLITONS ON 3-DIMENSIONAL 𝜂-EINSTEIN ALMOST KENMOTSU MANIFOLDS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.613-623
    • /
    • 2020
  • The notion of quasi-Einstein metric in theoretical physics and in relation with string theory is equivalent to the notion of Ricci soliton in differential geometry. Quasi-Einstein metrics or Ricci solitons serve also as solution to Ricci flow equation, which is an evolution equation for Riemannian metrics on a Riemannian manifold. Quasi-Einstein metrics are subject of great interest in both mathematics and theoretical physics. In this paper the notion of Ricci 𝜌-soliton as a generalization of Ricci soliton is defined. We are motivated by the Ricci-Bourguignon flow to define this concept. We show that if a 3-dimensional almost Kenmotsu Einstein manifold M is a 𝜌-soliton, then M is a Kenmotsu manifold of constant sectional curvature -1 and the 𝜌-soliton is expanding with λ = 2.