• Title/Summary/Keyword: Ribbed Walls

Search Result 30, Processing Time 0.018 seconds

Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Characteristics in the Ribbed Square Channel (거친 사각채널에서 열전달과 유체유동 특성에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Baer, Sung-Taek;Lee, Dae-Hee;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.275-283
    • /
    • 2006
  • Experiment and three dimensional numerical investigations of incompressible turbulent flow through square channels with one- and two-sided ribbed walls are performed to determine pressure drop and heat transfer. The CFX(version 5.7) software package is used for the computation. The ribbed walls have a $45^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results coincide with experimental data that obtained for $7,600{\le}Re{\le}24.900$, the pitch-to-rib height ratio (p/e) of 8.0. and the rib height-to-channel hydraulic diameter ratio ($e/D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor in the channel with two-sided ribbed wall are higher than those in the channel with one-sided ribbed walls.

An Experimental Studies on Heat Transfer and Friction Factor in a Square Channel with Varying Number of Ribbed Walls

  • Oh Se-Kyung;Kim Won-Cheol;Ahn Soo-Whan;Kang Ho-Keun;Kim Myoung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • An experimental study on the heat transfer and friction characteristics of a fully developed turbulent air flow in a square channel with $45^{\circ}$ inclined ribs on one, two, and four walls is reported. Tests were performed for Reynolds number ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e, was kept at 8 and rib height-to-channel hydraulic diameter ratio, $e/D_h$, was kept at 0.0667. The heat transfer coefficient and friction factor values were enhanced with the increase in the number of ribbed walls. Results of this investigation could be used in various applications of internal channel turbulent flows involving different number of roughened walls.

Experimental & Numerical Investigation for Heat Transfer and Flows in a $45^0$ Inclined Ribbed Square Channel ($45^0$의 rib이 설치된 채널에서의 열전달과 유동특성의 실험 및 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Kim, Myoung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.178-179
    • /
    • 2005
  • Numerical and experimental investigation of incompressible turbulent flow and heat transfer through square channels with varying number of ribbed walls were conducted to determined pressure drop and heat transfer. The CFX solver used for the computation. The rough walls have a $45^0$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results agreed well with experimental data that obtained for 7600$D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor increase with an increasing number of ribbed walls.

  • PDF

Heat Transfer and Friction in Rectangular Convergent Channels with Ribs on One Wall

  • Kim, Won-Cheol;Lee, Myung-Sung;Bae, Sung-Taek;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.12-18
    • /
    • 2014
  • The local heat transfer of developed turbulent flows in the stationary ribbed rectangular convergent channels has been investigated experimentally. The rectangular convergent channels with one ribbed surface only have the inclination of $0.72^{\circ}$ and $1.43^{\circ}$ at which the ribbed wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height (e) =10. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000. The local heat transfer characteristics of the rectangular convergent channels are quite different from those of the ribbed square straight channel.

Experimental hysteretic behavior of in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls

  • Li, Sheng-Cai;Dong, Jian-Xi;Li, Li-Feng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.95-112
    • /
    • 2012
  • In order to analyze the experimental hysteretic behavior of the in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls (RGMACBMW), we have carried out the pseudo static testing on the six specimens of RGMACBMW. Based on the test results and shear failure characteristics, the shear force hysteretic curves and displacement envelope curves of the models were obtained and discussed. On the basis of the hysteretic curves a general skeleton curve of the shear force and displacement was formed. The restoring model was adopted to analyze the seismic behavior and earthquake response of RGMACBMW. The deformation capacity of the specimens was discussed, and the formulas for calculating the lateral stiffness of the walls at different loading stages were proposed as well. The average lateral displacement ductility factor of RGMACBMW calculated based on the test results was 3.16. This value illustrates that if the walls are appropriately designed, it can fully meet the seismic requirement of the structures. The quadri-linear restoring models of the walls degradation by the test results accurately reflect the hysteretic behaviors and skeleton curves of the masonry walls. The restoring model can be applied to the RGMACBMW structure in earthquake response analysis.

Effect of Number of Heating Walls on Heat Transfer in Ribbed Rectangular Channel (거친 사각채널에서 가열 벽면의 수가 열전달에 미치는 효과)

  • Bae Sung Taek;Ahn Soo Whan;Kim Myoung Ho;Lee Dae Hee;Kang Ho Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.514-520
    • /
    • 2005
  • Surface heat transfer of a fully developed turbulent air flow in a $45^{\circ}$ inclined ribbed square duct with two and four heating walls was experimentally investigated, at which the experimental works were peformed for Reynolds numbers ranging from 7,600 to 26,000. The pitch-to-rib height ratio, p/e, was kept at 8 and rib-height-to-channel hydraulic diameter ratio, $e/D_h$ was kept at 0.0667. The channel length-to-hydraulic diameter ratio, $L/D_h$ was 60. The heat transfer coefficient values were decreased with the increase in the number of heat-ing walls. Results of this investigation could be used in various applications of internal channel turbulent flow involving roughened walls.

Characteristics of Heat Transfer in the Ribbed Rectangular Channel with Variable Heating Condition

  • Kim Won-Cheol;Putra Ary Bachtiar Krishna;Kang Ho-Keun;Ahn Soo-Whan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • Surface heat transfer of a fully developed turbulent air flow in a $45^{\circ}$ inclined ribbed square duct with two and four heating walls was experimentally investigated, at which the experimental works were performed for Reynolds numbers ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e was kept at 8 and rib-height-to-channel hydraulic diameter ratio, $e/D_h$ was kept at 0.0667. The channel length-to-hydraulic diameter ratio, $L/D_h$ was 60. The heat transfer coefficient values were decreased with the increase in the number of heating walls. Results of this investigation could be used in various applications of internal channel turbulent flow involving roughened walls.

Heat Transfer and Frictions in the Convergent/divergent Channel with Λ/V-shaped Ribs on Two Walls

  • Kim, Beom-soo;Lee, Myung-sung;Ahn, Soo-whan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.395-402
    • /
    • 2017
  • The local heat transfer and total pressure drops of developed turbulent flows in the ribbed rectangular convergent/divergent channels with ${\Lambda}/V-shaped$ ribs have been investigated experimentally. The channels have the exit hydraulic diameter ($D_{ho}$) to inlet hydraulic diameter ($D_{hi}$) ratios of 0.67 for convergence and 1.49 for divergence, respectively. The ${\Lambda}/V-shaped$ ribs with three different flow attack angles of $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$ are manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (S) to height (e) of 10 on the walls. Thermal performances of the ribbed rectangular convergent/divergent channels are compared with the smooth straight tube under identical pumping power. The results show that the flow attack angle of $45^{\circ}$ with ${\Lambda}-shaped$ rib has the greatest thermal performance at all the Reynolds numbers studied in the convergent channel; whereas, the flow attack angle of $60^{\circ}$ with V-shaped rib has the greatest thermal performance over Reynolds number of 30,000 in the divergent channel.

Heat Transfer Characteristics in a Leading Edge Cooling Channel of a Turbine Blade with Various Rib Arrangements (터빈 기익 선단부에 설치된 냉각유로에서의 요철 배열에 따른 열전달 특성)

  • Lee, Dong-Hyun;Kim, Kyung-Min;Rhee, Dong-Ho;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.459-466
    • /
    • 2005
  • The present study investigates the heat transfer characteristics of a triangular channel. Three different rib configurations are tested. The ribs are installed on two sides of the channel. The rib height (e) to channel hydraulic diameter is 0.079 and the rib-to-rib pitch (p) is 8 times of the rib height. The rotation number ranges from 0.0 to 0.1 while the Reynolds number is fixed at 10,000. The copper blocks with heaters are installed on the channel walls to measure the regionally averaged heat transfer coefficients. For the stationary $45^{\circ}$ and $135^{\circ}$ ribbed channels, a pair of counter rotating vortices is induced by the angled rib arrangements, and high heat transfer coefficients are obtained on the regions near the inner wall for the $45^{\circ}$ ribbed channel and near the leading edge for the $90^{\circ}$ ribbed channel. The heat transfer coefficients of angled ribbed channels are changed little with rotation, whereas those of the transverse ribbed channel are changed significantly with rotation.

  • PDF

Seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab

  • Turker, Kaan;Gungor, Ilhan
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.383-393
    • /
    • 2018
  • In this study, seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab were evaluated numerically. Moment resisting systems consisting of moment and dual frame were selected as structural system of the buildings. Sufficiency of moment resisting wide-beam frames designed with high ductility requirements were evaluated. Upon necessity frames were stiffen with shear-walls. The buildings were designed in accordance with the Turkish Earthquake Code (TEC 2007) and were evaluated by using the strain-based nonlinear static method specified in TEC. Second order (P-delta) effects on the lateral load capacity of the buildings were also assessed in the study. The results indicated that the predicted seismic performances were achieved for the low-rise (4-story) building with the high ductility requirements. However, the moment resisting frame with high ductility was not adequate for the medium-rise building. Addition of sufficient amount of shear-walls to the system proved to be efficient way of providing the target performance of structure.