• 제목/요약/키워드: Rib-Web Shape

검색결과 20건 처리시간 0.026초

비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술 (The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part)

  • 이영선;이정환
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

AI 합금 정밀단조를 위한 금형설계 및 공정조건의 영향 (The Effects of the Process and Die Design for Precision Forging of Al Alloys)

  • 이영선;이정환
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.166-173
    • /
    • 1999
  • Al forged parts are many cases with rib-web section which is difficult to manufacture precisely. Therefore, process conditions must be optimized for precision forging of Al alloys. In this study, various process parameters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment, upper bound theory and F.E.M. simulation to develop the precision forging technology for rib-web shape component. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF

AI7075합금의 정밀단조시 금형설계와 단조조건의 영향(ll) -유한요소해석을 중심으로- (The Effect of Die Design and Process Condition in Precision Forging for AI7075 (ll))

  • 이영선;이정환;이상용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.113-121
    • /
    • 1996
  • AI7075 alloy has been used for aircraft components since it has the advantage of high strength, high toughness, and high corrosion resistance. Many airframe components consist of various combinations of rib-web structure. In this study, various process paramenters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment and F.E.M. simulation to develop the precision forging technology for AI7075. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF

축대칭 냉간단조의 유한요소해석에서 퍼지로직을 이용한 전방투사법 (Forward Projection Using Fuzzy Logic in Axisymmetric Finite Element Simulation for Cold Forging)

  • 정낙면;이낙규;양동열
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1468-1484
    • /
    • 1992
  • 본 연구에서는 유한요소법을 이용해서 초기형상을 결정하는 새로운 방법으로 서 전방 투사법을 제안하고자 한다. 전방 투사법으로서 선형 보간을 이용한 방법과 소성 문제의 물리적인 특성을 고려하여 퍼지 로직을 도입한 퍼지시스템을 개발하려 한 다. 선형보간을 이용한 전방투사법은 임의의 초기 형상에 대한 유한 요소 해석 결과 얻어진 최종 형상에서의 미 충만 부피를 선형 보간하여 초기 형상에 적용함으로서 최 적 초기 형상을 결정하는 방법이다. 그러나 미 충만 부피의 변화가 미소할때에는 쉽 게 최적 초기 값을 찾지 못하는 경우가 발생하므로 유동 특성을 고려한 퍼지 로직을 구성하여 퍼지 시스템을 개발하였다. 이 방법을 리브-웨브(rbi-web)형태의 축대칭 단조 문제에 적용하고 유한 요소법에 의한 해석중 격자 재구성의 필요에 의해 단위체 격자 재구성법을 이용한다. 결정해야될 초기 형상의 변수로서는 형상비(aspect ra- tio=높이/지름)을 고려하기로 한다.

리브-웨브형 정밀단조에 관한 상계요소해석 (UBET Analysis on Precision Rib-Web Forgings)

  • 이종헌;김영호;배원병
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1211-1219
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flash and flashless forgings. The simulation for flash and flashless forgings are applied axisy mmetric and plane-strain closed-die forging with rib-web type cavity. Inverse triangular and inverse trapezoidal elements are used to analyze flashless forging. The analysis is described for merit of flashless precision forging. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load and the flow pattern are in good agreement with experimental results.

UBET를 이용한 리브-웨브형 링 단조에 관한 연구 (A study on rib-web shaped ring forging using UBET)

  • Kim, Y.H.;Bae, W.B.;Nam, K.H.
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.134-142
    • /
    • 1994
  • An upper bound elemental technique (UBET) is applied to predict variations of neutral plane and optimal position of the initial billet for rib-wep shaped ring forging. In the analysis, the neutral plane position and velocity fields are determined by minimizing the total power consump- tion with respect to chosen parameters. The degree of die-cavity filling by initial billet-position and the variations of neutral plane by friction condition are investigated. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

정밀단조 해석을 위한 최적 속도장에 관한 연구 (A Study on the Optimum Velocity Fields in Precision Forging)

  • 이종헌;김영호;김진욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.837-841
    • /
    • 1997
  • An upper bound elemental technique(UBET) program has been developed to analyze forging load, die-cavity filling and optimum kinematically admissible velocity fields for flashless forging. The simulation for flashless forgings are applied plane and axisymmetric closed-die forging with rib-web type cavity. The kinematically admissible velocity fields for inverse triangular and inverse trapezoidal elements, are used to analyze flashless forging. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load in plane-strain and axisymmetric forging are in good agreement with experimental results.

  • PDF

평면변형 및 축대칭 단조에서 최적 속도장에 관한연구 (A Study on the Optimum Velocity Fields in Plane-strain and Axisymmetric Forging)

  • 김진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.379-388
    • /
    • 1999
  • Au upper bound elemental technique(UBET) program has been developed to analyze forging load die-cavity filling and optimum kinematically admissible velocity fields for flashless forging. The simulation for flashless forgings are applied plane-strain and axisymmetric closed-die forging with rib-web type cavity. The kinematically admissible velocity fields for inverse triangular and inverse trapezoidal elements are used to analyze flashless forging,. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load in plane-strain and axisymmetric forging are in good agreement with experimental results.

  • PDF

Fatigue study on additional cutout between U shaped rib and floorbeam in orthotropic bridge deck

  • Ju, Xiaochen;Zeng, Zhibin;Zhao, Xinxin;Liu, Xiaoguang
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.319-329
    • /
    • 2018
  • The field around additional cutout of the floor beam web in orthotropic bridge deck was subjected to high stress concentration, especially the weld toe between floor beam and U shaped rib and the free edge of the additional cutout. Based on different considerations, different geometrical parameters of additional cutout were proposed in European, American and Japanese specifications, and there remained remarkable differences among them. In this study, considering influence of out-of-plane deformation of floor beam web and U shaped rib, parameter analysis for additional cutout under typical load cases was performed by fine finite element method. The influence of additional cutout shape and height to the stress distribution around the additional cutout were investigated and analyzed. Meanwhile, the static and fatigue test on this structure details was carried out. The stress distribution was consistent with the finite element analysis results. The fatigue property for additional cutout height of 95mm was slightly better than that of 61.5 mm.

사출성형부품의 싱크마크에 관한 연구 (A Study on Sink Mark of Injection Molded Products)

  • 서윤수;김영호;임동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.811-814
    • /
    • 1997
  • The injection molding process has been developed as a very important technology for the automotive and electric industries in recent years. But, in the injection molding products with rib-web structures, partial deformation by thermal volumetric shrinkage called Sink Mark, is occurred. In this study, to make explicitly characteristics of sink mechanism, an experimental approach was taken by using multi T-shaped mold cavity and FEM simulation. As a result, pressure on the packing process and the rib thickness are the most effective on sink mark depth. On the other hand, melt temperature has no effect on sink mark depth fot the same rib thickness.

  • PDF