• Title/Summary/Keyword: Rib 채널

Search Result 57, Processing Time 0.027 seconds

Numerical Simulation for Heat Transfer and Fluid Flow in the Channel with $45^{\circ}$ Incinlined Rib ($45^{\circ}$ 경사진 거칠기가 설치된 채널에서 유체유동과 열전달에 대한 수치모사)

  • Oh, S.K.;Kang, H.K.;Kim, M.H.;Bae, S.T.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.25-33
    • /
    • 2006
  • 거칠기가 한 벽면과 두 벽면에 설치된 사각채널에서 비압축성 유체유동과 열전달을 조사하기위해 3차원 수치모사를 행하였다. CFX (version 5) software package 를 사용하여 계산하였다. 거친 벽은 $45^{\circ}$경사진 거칠기가 설치되어 있다. 채널의 4 벽면은 일정한 열 유속으로 가열하였다. 수치계산 결과는 실험값과 잘 일치 하였다. 연구의 조건은 거칠기 피치와 높이의 비가 8이고, 거칠기 높이와 채널 수력직경의 비가 0.067이며, 레이놀즈수의 범위는 7,600에서 24,900이었다. 연구의 결과는 열전달계수와 마찰계수는 사각채널에서 거친 벽면의 수가 클수록 증가 함을 보였다.

  • PDF

Turbulent Heat Transfer and Friction in Four-Wall Convergent/Divergent Square Channels with One Ribbed Wall (한면에 리브가 설치된 4벽면 수축/확대 채널의 난류 열전달과 유체마찰)

  • Ahn, Soo Whan;Lee, Myung Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.773-778
    • /
    • 2015
  • The local heat transfer and pressure drop of developed turbulent flows in convergent/divergent channels with square axial cross-sectional areas were experimentally investigated to improve the channel design, such as a gas turbine cooling system. Square convergent/divergent channels with one ribbed wall were manufactured with a fixed rib height e of 10 mm and a ratio of rib spacing p to height e of 10. The measurement was conducted for Reynolds numbers from 15,000 to 89,000. Convergent, divergent, and straight channels with ratios $D_{ho}/D_{hi}$ of 0.75, 1.33, and 1.0, respectively, are considered. Of the three channel types, the ribbed divergent channel was found to produce the best thermal performance under identical flow rate, pumping power, and pressure loss conditions.

Numerical Analysis of Thermal and Flow affected by the variation of rib interval and Pressure drop Characteristics (리브 간격 변화에 따른 열.유동 수치해석 및 압력 저하 특성)

  • Chung, Han-Shik;Lee, Gyeong-Wan;Shin, Yong-Han;Choi, Soon-Ho;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • The flow characteristics and heat transfer augment on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow has been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio were 0.07 and rib height to channel height ratio was set as e/H=0.117 for various PR(rib pitch-to-rib height rate) between 8~14, respectively. The SST k-${\omega}$ turbulence model and v2-f turbulence model were used to find out the heat transfer and the flow characteristics of near the wall which are suited to obtain realistic phenomena. The numerical analysis results show turbulent flow characteristics, heat transfer enhancement and friction factor as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow. and v2-f turbulence model simulation results have a good agreement with experimental values.

The Effects of Surface Roughness on Heat Transfer in The Reciprocating Channel (왕복운동을하는 채널에서 표면거칠기가 열전달에 미치는 영향)

  • Ahn Soo Whan;Son Kang Pil
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.333-336
    • /
    • 2002
  • This paper describes a detailed experimental Investigation of heat transfer In a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively, in the ranges, $1,000\;{\~}\;6,000,\;1.7\;{\~}\;2.5\;Hz,\;and\;7\;{\~}\;15cm$ with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (a), Case (d), Case (c), and Case (b)

  • PDF

Effect of Rib Angle on Thermal Performance in a Two Wall Convergent/Divergent Channel with Ribs on One Wall (양측면 수축/확대 사각채널에서 한면에 설치된 리브의 각도가 열성능에 미치는 효과)

  • Ahn, Soo Whan;Lee, Myung Sung;Bae, Sung Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.195-200
    • /
    • 2015
  • The thermal performance in the channels with two-wall rectangular convergent/divergent cross-sectional areas along the axial distance was investigated experimentally. The ribbed rectangular convergent/divergent channels were manufactured with a fixed rib height (e) = 10 mm and the ratio of rib spacing (p) to height (e) = 10. Three different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$) were each placed on the channel's one sided wall only. The convergent channel of $D_{ho}/D_{hi}=0.67$ and the divergent channel of $D_{ho}/D_{hi}=1.49$ were considered. The ribbed divergent channel produced better thermal performance than the ribbed convergent channel in three different restrictions; identical flow rate, identical pumping power, and identical pressure loss.

Effects of Bleed Hole on Heat/Mass Transfer in a Rotating Channel with Transverse Ribs (90도 요철이 설치된 회전덕트에서 유출홀이 열/물질전달에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.178-184
    • /
    • 2005
  • The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter ($D_h$) of the square channel is 40.0 mm. The bleed holes are located between the rib turburators on leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surfaces. The rib-to-rib pitch is 10.0 times of the rib height (e) and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow were fixed at 10,000 and 10%, respectively. The results suggest that the heat/mass transfer characteristics in the internal cooling passage are influenced by rib turbulators, bleed flow and the Cariolis force induced by rotation. For the rotating ribbed passage with bleed flow, the heat/mass transfer on the leading surface is hardly affected by bleed flow, but that on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with the bleed flow.

  • PDF

Power Splitting of Plasmonic Directional Couplers with Nano-scale Three Channels (나노 크기의 세 채널 플라즈마 방향성 결합기의 전력분배)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.47-52
    • /
    • 2011
  • Directional couplers based on plasmonic waveguides with nano-scale three channels are designed by utilizing mode coupling effect as well as rib-guiding structure. Longitudinal modal transmission-line theory(L-MTLT) is used for simulating the light propagation and optimizing the design parameters. The designed plasmonic coupler operating as power splitter has nano-scale size of about 200~250 nm width. In order to achieve the desired power splitting ratio, the refractive index of guiding modes is evaluated along the width variation of center channel. Finally, a power splitter based on triple rib directional coupler, which ensures maximum power transfer from one outermost guide to the other outermost guide, is designed.

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.

Experimental & Numerical Investigation for Heat Transfer and Flows in a $45^0$ Inclined Ribbed Square Channel ($45^0$의 rib이 설치된 채널에서의 열전달과 유동특성의 실험 및 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Kim, Myoung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.178-179
    • /
    • 2005
  • Numerical and experimental investigation of incompressible turbulent flow and heat transfer through square channels with varying number of ribbed walls were conducted to determined pressure drop and heat transfer. The CFX solver used for the computation. The rough walls have a $45^0$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results agreed well with experimental data that obtained for 7600$D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor increase with an increasing number of ribbed walls.

  • PDF

Effects of Rough Surfaces on Heat Transfer in Channel Flow (채널유동에서 거친벽면이 열전달에 미치는 효과)

  • Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.30-35
    • /
    • 2001
  • A comparison of fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with one wall roughened by five different shapes. The effects of rib shape geometries and Reynolds number are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed at $e/D_e=0.0476$, P/e=8, and W/H=2.33, respectively. To understand the mechanisms of the heat transfer enhancements, the measurements of the friction factors are also conducted in the smooth and rough channels. The data indicate that the triangular type rib has a substantially higher efficiency index than any other ones in the range we studied.

  • PDF