• Title/Summary/Keyword: Rhyolitic rocks

Search Result 54, Processing Time 0.021 seconds

Petrology of the Cretaceous igneous rocks in Gadeog Island, Busan, Korea (부산 가덕도 지역 백악기 화성암류에 대한 암석학적 연구)

  • 고정선;김은희;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • This study focuses on the petrography and petrochemical characteristics of the volcanic and plutonic rocks in Gadeog island, Busan, Korea. Based on textural and mineralogical characteristics, intermediate volcanic rocks can be divided into andesitic lava flows (porphyritic and massive andesites) and andesitic pyroclastics. Felsic volcanic rocks are composed of rhyolite, rhyolitic welded tuff, and tuff breccia. Plutonic rocks are intruded rhyolite and andesitic rocks, and composed of hornblende granodiorite which contains lots of mafic magma enclaves. Volcanic rocks are composed of andesite, dacite and rhyolite having a range in SiO$_2$ from 59 to 78wt.%. The volcanic rocks belong to the calc-alkaline rock series. Plutonic rocks have a range in SiO$_2$ from 63 to 69wt.%. This compositional variations correspond to those of Cretaceous volcanic and plutonic rocks in the southeastern Gyeongsang basin. The trace element composition and rare earth element patterns of the volcanics, which are characterized by high LREE/HFSE ratios and enrichment in LREE, suggest that they are typical of calc-alkaline volcanic rocks produced in the subduction environment around continental arc. We concluded that volcanic and plutonic rocks in Gadeog Island were evolved from orogenic andesitic magma which was produced by partial melting of the mantle wedge in the subduction environment.

Study on the Geochemical Characteristics of the Mesozoic Volcanic Rocks in Da Hinggan Ling Area, Northeast China (중국 북동부 대흥안령 지역 중생대 화산암류에 대한 암석화학적 특성 연구)

  • Yun, Sung-Hyo;Won, Chong-Kwan;Lee, Moon-Won;Lin, Qiang
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.67-80
    • /
    • 2000
  • We studied petrological and geochemical characteristics of the Mesozoic volcanic rocks in the Da Hinggan Ling area northeast China, and discussed tectonic settings and origin of the Mesozoic volcanic rocks in northeast Asia. Volcanic rocks in Da Hinggan Ling area are composed of alkaline to subalkaline basalt-basaltic andesite-andesite-dacite-rhyolite, showing typical BAR(basalt-andesite-rhyolite) association. However, most of the volcanic rocks are basaltic and rhyolitic in composition, and andesitic rocks are relatively rare, which shows bimodal characteristics. Rb, Ba, Th and other incompatible element contents in the volcanic rocks are enriched, but the contents decrease with increasing the compatibility. REEs are fractionated and REE patterns of volcanic rocks are characterized by a high LILE/HFSE. On the tectonomagmatic discriminant diagram of Hf-Th-Nb, they fall into the fields for subduction-related destructive plate margin basalts and its differentiates. We suggest that the tectonomagmatic setting of Da Hinggan Ling area was located at the continental margin arc related with subduction environment during the Mesozoic time or may be derived from mantle plume contaminated geochemically from subducting slabs, although it is, at present within the Asia continent.

  • PDF

Petrological Study on the Volcanic Rocks in Namoo and Namhyeongje Island, Off the Southern Coast of Busan City, Korea (부산광역시 남부 나무섬과 남형제섬 화산암의 암석학적 연구)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • This study reports the results about the petrography of volcanic rocks in Namoo island and Namhyeongje island, off the southern coast of Busan City. The rocks in the Namhyeongje island composed of dacitic crystal-vitric welded tuff, showing phenocrysts of plagioclase, rock fragment with flow structure of elongated and flattened pumice fragments. In thin section it shows pyroclastic texture. The volcanic rocks in Namoo island are mainly dark grey-bluish dacite with phenocrysts of plagioclase and gradually changed to pink-greyish rhyodacite with auto-brecciated. In the northeastern part of the island, the volcanic rocks occurred as aggromerate with a poorly sorted mixture of blocks, lappili and ash and felsic feeder dike intrude the aggromerate. Major element composition of the volcanic rocks in Namhyeongje island and Namoo island are $SiO_2$ 73.6~74.4 wt.% and 65.5~68.3 wt.%, respectively. The volcanic rocks in these island are felsic volcanic rocks.

Multiple Magmas and Their Evolutions of the Cretaceous Volcanic Rocks in and around Mireukdo Island, Tongyeong (통영 미륵도 주변 백악기 화산암류의 복식 마그마와 그 진화)

  • Hwang, Sang Koo;Lee, So Jin;Ahn, Ung San;Song, Kyo-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.121-138
    • /
    • 2018
  • We have examined the petrotectonic setting and magmatic evolution from petrochemical characteristics of major and trace elements for the Cretaceous volcanic rocks in and around the Mireukdo Island. The volcanic rocks, can be devided into Jusasan, Unmunsa, Yokji and Saryang subgroups on the ascending order, are classified as basalt, basaltic andesite, andesite, dacite and rhyolite on TAS diagram. Petrochemical data show that the rocks are calc-alkaline series, and suggest that erupted earlier medium-K series and later high-K series. The volcanic rocks provide a case in which the calc-alkaline magma are formed, not only from separate protoliths, but following separate paths from source to surface. Earlier and later subgroups take different paths to the surface respectively, and are emplaced in the shallow crust as a series of discrete magma chambers through the volcanic processes. After emplacement, each chamber evolves indepently through fractional crystallization with a little assimilation of wall rock. The volcanic rocks have close petrotectonic affinities with orogenic suite and subduction-related volcanic arc. The rhyolitic magma can be derived from calc-alkaline andesitic magma by fractional crystallization with crustal assimilation, which may be derived from a partial melt of peridotite in the upper mantle.

Petrotectonic Setting and Petrogenesis of Cretaceous Igneous Rocks in the Cheolwon Basin, Korea (철원분지 백악기 화성암류의 암석조구조적 위치와 암석성인)

  • Hwang, Sang-Koo;Kim, Se-Hyeon;Hwang, Jae-Ha;Kee, Won-Seo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.67-87
    • /
    • 2010
  • This article deal with petrotectonic setting and petrogenesis from petrography and chemical analyses of the Cretaceous volcanic and intrusive rocks in the Cheolwon basin. The volcanic rocks are composed of basalts in Gungpyeong Formation, Geumhaksan Andesite, and rhyolitic rocks (Dongmakgol Tuff, Rhyolite and Jijangbong Tuff), and intrusive rocks, Bojangsan Andesite, granite porphyry and dikes. According to petrochemistry, these rocks represent medium-K to high-K basalt, andesite and rhyolite series that belong to calc-alkaline series, and generally show linear compositional variations of major and trace elements with increase in $SiO_2$ contents, on many Harker diagrams. The incompatible and rare earth elements are characterized by high enrichments than MORB, and gradually high LREE/HREE fractionation and sharp Eu negative anomaly with late strata, on spider diagram and REE pattern. Some trace elements exhibit a continental arc of various volcanic arcs or orogenic suites among destructive plate margins on tectonic discriminant diagrams. These petrochemical data suggest that the basalts may have originated from basaltic calc-alkaline magma of continental arc that produced from a partial melt of upper mantle by supplying some aqueous fluids from a oceanic crust slab under the subduction environment. The andesites and rhyolites may have been evolved from the basaltic magma with fractional crystallization with contamination of some crustal materials. Each volcanic rock may have been respectively erupted from the chamber that differentiated magmas rose sequentially into shallower levels equivalenced at their densities.

The Water Environment at the Seokdae Waste Landfill Area in the Pusan Metropolitan City (부산 석대 폐기물 매립지 일원의 수질 환경)

  • 정상용;권해우;이강근;김윤영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.175-184
    • /
    • 1997
  • The Seokdae Waste Landfill is a middle-sized site used from June, 1987 to May, 1993. Many joints and faults are developed in andesitic rocks and rhyolitic rocks distributed at the landfill. The chemical analyses of leachates, streams and groundwaters sampled in July, 1996 and June, 1997 show that the concentrations of leachates and streams were decreased, and that the groundwater qualities became worse. The groundwater contamination is deeply extended to not only shallow groundwater but also bedrock-groundwater around the Seokdae Waste Landfill Area. The range of groundwater contamination by the leachates is about 500 m to the west and about 1 km to the south from the boundaries of the waste landfill. The development of monitoring wells and pumping wells, the construction of a leachate-treatment facilities, and the adjustment of the existing grout curtains are necessary for the control of water pollution at the Seokdae Waste Landfill Area.

  • PDF

Petrological Evolution of the Saryangdo Tuff in Western Tongyeong (통영 서부 사량도응회암의 암석학적 진화)

  • Lee, So Jin;Hwang, Sang Koo;Song, Kyo-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.71-83
    • /
    • 2019
  • The volcanic rocks in Saryangdo area are composed of Witseom Andesite, Punghwari Tuff, Araetseom Andesite, Obido Formation, Namsan Rhyolite and Saryangdo Tuff in ascending order. The volcanic rocks has a range of andesite-rhyodacite-rhyolite, which indicates calc-alkaline series and volcanic arc of orogenic belt. In Harker diagrams for trace element and REE pattern, these are also distinguished into so three groups(Witseom Andesite, Araetseom Andesite and Saryangdo Tuff) that each unit is interpreted to have originated in different magma chamber. The Saryangdo Tuff exhibits systematically(chemical zonations that gradually change) from lower dacite to upper rhyolite in section. The systematic sequence of compositional variations suggests that the tuffs were formed by successive eruptions of upper to lower part of a zoned magma chamber in which relatively dacitic magma is surrounded around rhyolitic magma of the central part. The zoned magma chamber was formed from marginal accretion and crystal settling that resulted form magmatic differentiations by fractional crystallization.

Geological Occurrence and Mineralogy of Pyrophyllite Deposits in the Jinhae Area (진해 납석광상의 산상과 광물학적 특성)

  • Kwack, Kyo-Won;Hwang, Jin-Yeon;Oh, Ji-Ho;Yoon, Keun-Taek;Chi, Sei-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.163-176
    • /
    • 2009
  • The pyrophyllite deposits located in Jinhae area have been studied through field observations and laboratory works including the X-ray diffraction (XRD), X-ray fluorescence (XRF), Electron probe microanalyzer (EPMA) and Inductively Coupled Plasma (ICP). The pyrophyllite deposits consist of mainly illite, dickite, pyrophyllite, diaspore, chlorite, pyrite and copiapite. According to the mineral assemblages, geological occurrences and alteration modes, the altered rocks can be classified into four types: Type A; quartz with silicifictaion, Type B; quartz + illite with illitization, Type C; quartz + dickite + illite with kaolin alteration, Type D; pyrophyllite + illite + dickite + diaspore with pyrophyllite alteraion. Rocks in Type A, which is generated by silicifictaion, have high $SiO_2$ contents more than 90 wt% and distinctive equigranular textures with microcrtstalline quartz. The pyrophyllites from the study area belong to 2M polytype. The host rocks of the pyrophyllite ore in this mine are rhyolitic rock, andecitic tuff and volcanic breccia. The alteration products seem to be controlled by the different lithology of the host rocks. The hydrothermal solution formed the deposits would be inferred to the acidic and have relatively high ionic activity of hydrogen and silica judging from alteration mineral assemblage. Pyrophyllite alteraion zone is generated by highest temperature condition of all alteration zone.

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.