• Title/Summary/Keyword: Rhombohedral

Search Result 222, Processing Time 0.029 seconds

Piezoelectric and Dielectric Characteristics of Low Temperature Sintering Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 Ceramics according toPb(Ni1/3Nb2/3)O3 Substitution (Pb(Ni1/3Nb2/3)O3 치환에 따른 저온소결 Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 세라믹스의 압전 및 유전 특성)

  • Yoo Ju-Hyun;Lee Sang-Ho;Paik Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.35-39
    • /
    • 2006
  • In this study, in order to develop the multilayer piezoelectric actuator and ultrasonic resonator, PMN-PNN-PZT ceramics were fabricated by sintering with $Li_2CO_3-Na_2CO_3$ as sintering aids at $950^{\circ}C$ and their piezoelectric and dielectric characteristics were investigated as a function of PNN substitution. With increasing PNN substitution, dielectric constant(${\epsilon}_r$), electromechanical coupling factor(kp), and piezoelectric d constant($d_{33}$) were increased to $12 mol\%$ PNN substitution and then showed a tendency to decrease rapidly With increasing PNN substitution, crystal structure changed from tetragonal to rhombohedral at $12 mol\%$ PNN substitution and then secondary phase was appeared and its intensity was increased. At the $12 mol\%$ PNN substituted PMN-PZT composition ceramic sintered at $950^{\circ}C$, density, kp, $d_{33}$ and Qm showed the optimum value of $7.79 g/cm^3$, 0.599, 419 pC/N, and 894, respectively for multilayer piezoelectric actuator application.

Photoluminescence of Multinary-compound Semiconductor $ZnGaInS_4:Er^{3+}$ Single Crystals (다원화합물 반도체 $ZnGaInS_4:Er^{3+}$ 단결정의 광발광 특성)

  • Kim, Nam-Oh;Kim, Hyung-Gon;Bang, Tae-Hwan;Hyun, Seung-Cheol;Kim, Duck-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.35-39
    • /
    • 2000
  • $ZnIn_2S_4$ and $ZnGaInS_4:Er^{3+}$ single crystals crystallized in the rhombohedral (hexagonal) space group $C_{3v}^5(R3m)$, with lattice constants $a=3.852{\AA},\;c=37.215{\AA}$ for $ZnIn_2S_4$, and $a=3.823{\AA}$, and $c=35.975{\AA}$ for $ZnIn_2S_4:Er^{3+}$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of there compounds had a direct and indirect band gap, the direct and indirect energy gaps are found to be 2.778 and 2.682 eV for $ZnIn_2S_4$, and 2.725 and 2.651eV for $ZnIn_2S_4:Er^{3+}$ at 293 K. The photoluminescence spectra of $ZnIn_2S_4:Er^{3+}$ measured in the wavelength ranges of $500nm{\sim}900nm$ at 10 K. Eight sharp emission peaks due to $Er^{3+}$ ion are observed in the regions of $549.5{\sim}550.0nm,\;661.3{\sim}676.5nm$, and $811.1{\sim}834.1nm$, and $1528.2{\sim}1556.0nm$ in $CdGaInS_4:Er^{3+}$ single crystal. These PL peaks were attributed to the radiative transitions between the split electron energy levels of the $Er^{3+}$ ions occupied at $C_{2v}$, symmetry of the $ZnIn_2S_4$ single crystals host lattice.

  • PDF

Temperature Dependence of Optical Energy Gaps of $CdGaInS_4:Er^{3+}$ Single Crystals for Optoelectronic device (광전 소자용 $CdGaInS_4:Er^{3+}$ 단결정의 광학적 에너지 갭의 온도의존성)

  • Kim, Hyung-Gon;Kim, Byung-Chul;Bang, Tae-Hwan;Hyun, Seung-Cheol;Kim, Duck-Tae;Son, Gyeong-Chun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.56-59
    • /
    • 2000
  • $CdGaInS_4$ and $CdGaInS_4:Er^{3+}$ single crystals crystallized in the rhombohedral(hexagonal) structure. with lattice constants $a=3.913{\AA},\;c=37.245{\AA}$ for $CdGaInS_4$, and $a=3.899{\AA}$ and $c=36.970{\AA}$ for $CdGaInS_4:Er^{3+}$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of these compounds had a direct and indirect band gap. the direct and indirect energy gaps are found to be 2.771 and 2.503 eV for $CdGaInS_4$, and 2.665 and 2.479 eV for $CdGaInS_4:Er^{3+}$ at 10 K. The temperature dependence of the optical energy gap was well represented by the Varshni equation. In $CdGaInS_4$, the values of ${\alpha},\;{\beta}$ of the direct and the indirect energy gap were found to be $7.57{\times}10^{-4}eV/K$. $6.53{\times}10^{-4}eV/K$ and 240K. 197K. and the values of ${\alpha}$ and ${\beta}$ of the direct and the indirect energy gap in the $CdGaInS_4:Er^{3+}$ were given by $8.28{\times}10^{-4}eV/K,\;2.08{\times}10^{-4}eV/K$ and 425 K, 283 K, respectively.

  • PDF

Piezoelectric Properties and Phase Transition behaviors of (Bi1/2Na1/2)1- xCaxTiO3Ceramics ((Bi1⁄2Na1⁄2)1-xCaxTiO3 세라믹스의 압전 특성 및 상전이 거동)

  • Lee, Yong-Hyun;Cho, Jeong-Ho;Kim, Byung-Ik;Choi, Duck-Kyun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.263-267
    • /
    • 2008
  • $(Bi_{1/2}Na_{1/2})TiO_3$-based ceramics have been intensively studied as lead-free piezoelectric ceramics. In this study, the piezoelectric properties and phase transition behaviors of BNT based solid solution $(Bi_{0.5}Na_{0.5})_{1-x}Ca_xTiO_3$ ($X=0.01{\sim}0.25$) were investigated. The morphotropic phase boundary(MPB) zone which BNT is transformed from rhombohedral to cubic structure was appeared by adding $CaTiO_3$ with 0.12 mol by the measurement of permittivity and X-ray diffraction. The behavior which ferroelectric BNT with adding $CaTiO_3$ was changed to antiferroelectric and paraelectric state was confirmed by the measurement ofhysterisis loop and depolarization temperature as a function of temperature. As $CaTiO_3$ concentration was increased, the phase transition temperature was decreased. The piezoelectric properties were highest at 0.01 mol of $CaTiO_3$ concentration. The electromechanical coupling factor($K_t$) and mechanical quality factor($Q_m$) were 42% and 254, respectively.

PREPARATION AND CHARACTERIZATION OF MULTIFERROIC 0.8 $BiFeO_3$-0.2 $BaTiO_3$ THIN FIMLS BY PULSED LASER DEPOSITION

  • Kim, K.M.;Yang, P.;Zhu, J.S.;Lee, H.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.313-313
    • /
    • 2010
  • $BiFeO_3$ (BFO), when forming a solid solution with $BaTiO_3$ (BTO), shows structural transformations over the entire compositional range, which not only gives a way to increase structural stability and electrical resistivity but also applies a means to have better ferromagnetic ordering. In this respect, we have prepared and studied 0.8 BFO-0.2 BTO thin films on Pt(111)/$TiO_2/SiO_2$/Si substrates by pulsed laser deposition. Various deposition parameters, such as deposition temperature and oxygen pressure, have been optimized to get better quality films. Based on the X-ray diffraction results, thin films were successfully deposited at the temperature of $700^{\circ}C$ and an oxygen partial pressure of 10mTorr and 330mTorr. The dielectric, ferroelectric, and magnetic properties have then been characterized. It was found that the films deposited under lower and higher oxygen pressure corresponded to lower leakage current. Magnetism measurement showed an induced ferromagnetism. The microstructures associated with the magnetic and dielectric properties of this mixed-perovskite solid solutions were observed by transmission electron microscopy, which revealed the existence of complicated ferroelectric domains, suggested that the weak spontaneous magnetization was closely associated with the decrease in the extent of rhombohedral distortion by a partial substitution of $BaTiO_3$ for $BiFeO_3$.

  • PDF

Dielectric and Piezoelectric Properties of Pb(Zr1/2Ti1/2)O3-Pb(Cu1/3Nb2/3)O3-Pb(Mn1/3Nb2/3)O3 System (Pb(Zr1/2Ti1/2O3-Pb(Cu1/3Nb2/3)O3-Pb(Mn1/3Nb2/3)O3계의 유전 및 압전 특성)

  • Lee, Hyeung-Gyu;Kang, Hyung-Won;Choi, Ji-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.698-702
    • /
    • 2005
  • Dielectric and Piezoelectric properties of complex perovskite 0.92Pb($Zr_{1/2}Ti_{1/2})O_{3}-(0.08-x)Pb(Cu_{1/3}Nb_{2/3})O_{3}-xPb(Mn_{1/3}Nb_{2/3})O_{3}(0{\leq}x{\leq}0.080$) (PZT-PCN-PMN) system were investigated as a function of PMN content. With the increase of PMN content of the sintered specimens, tetragonal phase was coexisted with rhombohedral phase, the dielectric constant was decreased, mechanical quality factor ($Q_{m}$) was inceased, and optimal sintering temperature was increased up to 1050$^{\circ}C$. For the composition of x = 0.064 sintered at 1050$^{\circ}C$ for 2 h, 1939 of maximum mechanical quality factor ($Q_{m}$), 57$\%$ of electromechanical coupling factor ($k_{p}$), and 1100$^{\circ}C$ of dielectric constant, 0.37$\% $ of dielectric loss (tan $\delta$) were obtained.

Synthesis and Crystal Structure Characterization of Ga2O3 Powder by Precipitation and Polymerized Complex Methods (침전법과 착체중합법을 이용한 Ga2O3 분말의 합성 및 결정구조 분석)

  • Jung, Jong-Yeol;Kim, Sang-Hun;Kang, Eun-Tae;Han, Kyu-Sung;Kim, Jin-Ho;Hwang, Kwang-Teak;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.156-161
    • /
    • 2014
  • Gallium oxide ($Ga_2O_3$) powders were synthesized using a precipitation method and a polymerized complex method. TG-DSC, SEM, and XRD were performed to investigate the phase and morphology of the $Ga_2O_3$. In situ high-temperature XRD analysis revealed the crystal structure of $Ga_2O_3$ at different temperatures. The $Ga_2O_3$ obtained using the precipitation method and polymerized complex method were generally spherical-shaped particles and their average particle size was approximately 80 nm and $1{\mu}m$, respectively. The crystal structure of the $Ga_2O_3$ prepared by the precipitation method was changed from rhombohedral to monoclinic at $700^{\circ}C$, while monoclinic $Ga_2O_3$ was obtained directly from the precursor by the polymerized complex method.

Synthesis and Characterization of LSCF/CGO Composite Cathode for SOFC (SOFC용 LSCF/CGO 공기극의 제조 및 특성연구)

  • Park, Jae-Layng;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Shin, Dong-Ryul;Han, Kyoo-Seung;Song, Rak-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • Composites of LSCF($La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$) and CGO (gadolinium doped ceria)-based ceramics are logical candidate cathode materials with CGO electrolytes. LSCF with perovskite structure was synthesized and investigated by Solid State Reaction (SSR) method used as cathode materials for SOFC (solid oxide fuel cell). The optimized temperature was $1100^{\circ}C$ to synthesize $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ with rhombohedral structure. The polarization resistance of the LSCF/CGO (50:50 wt.%) was smaller than that of other composite cathodes. The analysis of the EIS data of LSCF/CGO suggests that the diffusion and adsorption-desorption of oxygen can be the key process in the cathodic reaction.

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

Effect of Electrical Field on the Phase Transformation of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Single Crystals (단결정 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 의 상전이에 미치는 전장의 영향)

  • Lee, Eun-Gu
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.329-333
    • /
    • 2013
  • The structural phase transformations of $0.7Pb(Mg_{1/3}Nb_{2/3})O_3-0.3PbTiO_3$ (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)${\rightarrow}$tetragonal (T)${\rightarrow}$rhombohedral (R) phase was observed in zero-field-cooled conditions; and a $C{\rightarrow}T{\rightarrow}$monoclinic $(M_C){\rightarrow}$ monoclinic ($M_A$) phase was observed in the field-cooled conditions. The transformation of T to $M_A$ phase was realized through an intermediate $M_C$ phase. The results also represent conclusive and direct evidence of a $M_C$ to $M_A$ phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a $R{\rightarrow}M_A{\rightarrow}M_C{\rightarrow}T$ phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the $M_A$ phase was stable at room temperature. With increasing the field, the transformation temperature from T to $M_C$ and from $M_C$ to $M_A$ phase decreased, and the phase stability ranges of both T and $M_C$ phases increased. Upon removal of the field, the phase transformation from R to $M_A$ phase was irreversible, but from $M_A$ to $M_C$ was reversible, which means that $M_A$ is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.