• Title/Summary/Keyword: Rhodamine

Search Result 365, Processing Time 0.023 seconds

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) (합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

EFFECT OF DENTINAL TUBULES ORIENTATION ON PENETRATION PATTERN OF DENTIN ADHESIVES USING CONFOCAL LASER SCANNING MICROSCOPY (상아세관의 주행방향에 따른 상아질 접착제의 침투양상에 대한 공초점레이저주사현미경 연구)

  • Kim, Dong-Jun;Hwang, Yun-Chan;Kim, Sun-Ho;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.392-401
    • /
    • 2003
  • The purpose of this study was to evaluate the penetration pattern of dentin adhesives according to the orientation of dentinal tubules with confocal laser scanning microscopy. Specimens having perpendicular. parallel and oblique surface to dentinal tubules were fabricated. The primer of dentin adhesives (ALL $BOND^{\circledR}{\;}2,{\;}CLEARFIL^{TM}$ SE BOND and PQ1) was mixed with fluorescent material. rhodamine B isothio-cyanate (Aldrich Cherm. CO., Milw., USA), It was applied to the specimens according to the instructions of manufactures. The specimens were covered with composite resin (Estelite, shade A2) and then cut to a thickness of 500$\mu\textrm{m}$ with low speed saw (Isomet^{TM}, Buehler. USA). The adhesive pattern of dentin adhesives were observed by fluorescence image using confocal laser scanning microscopy. The results were as follows. 1. For the groups with tubules perpendicular to bonded surface. funnel shape of resin tag was observed in all specimen. However. resin tags were more prominent in phosphoric acid etching system (ALL $BOND^{\circledR}$ 2 and PQ1) than self etching system ($CLEARFIL^{TM}$ SE BOND). 2. For the groups with tubules parallel to bonded surface. rhodamine-labeled primer penetrated into peritubular dentin parallel to the orientation of dentinal tubules. But rhodamine-labeled primer of PQ1 diffused more radially into surrounding intertubular dentin than other dentin adhesive systems. 3. For the groups with tubules oblique to bonded surface. resin tags appeared irregular and discontinuous. But they penetrated deeper into dentinal tubules than other groups.

Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Rhodamin-B onto Granular Activated Carbon (입상 활성탄에 의한 Rhodamin-B의 흡착 열역학, 동력학 및 등량 흡착열에 관한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.199-204
    • /
    • 2016
  • The adsorption of Rhodamine-B dye using granular activated carbon from aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, pH initial concentration, contact time and temperature. The equilibrium adsorption data showed a good fit to Langmuir isotherm model. Based on the estimated Langmuir separation factor ($R_L$ = 0.0164~0.0314), our adsorption process could be employed as an effective treatment method. The kinetics of adsorption followed the pseudo first order model. Also, the negative values of Gibbs free energy (-4.51~-13.44 kJ/mol) and positive enthalpy (128.97 kJ/mol) indicated that the adsorption was spontaneous and endothermic process. The isosteric heat of adsorption increased with increase in the surface loading indicating lateral interactions between the adsorbed dye molecules.

Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation (추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가)

  • Park, Hyung Seok;Lee, Eun Ju;Ji, Hyun Seo;Choi, Sun Hwa;Chun, Se Woong
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

A Study of Hydrodynamic Dispersions in the Unsaturated and the Saturated Zone of a Multi-soil Layer Deposit Using a Continuous Injection Tracer Test (복합토양층의 불포화대와 포화대에서 연속주입 추적자시험을 이용한 수리분산특성 연구)

  • Chung, Sang-Yong;Kang, Dong-Hwan;Lee, Min-Hee;Son, Joo-Hyong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.48-56
    • /
    • 2006
  • Using a continuous injection tracer test at a multi-soil layer deposit, the difference of hydrodynamic dispersions in unsaturated and saturated zones were analyzed through breakthrough curves of Rhodamine WT, linear regression of concentration versus time, concentration variation rates versus time, and concentration ratio according to the distance from injection well. As a result of continuous injection tracer test, the difference of the maximum concentrations of Rhodamine WT in unsaturated and saturated zones were 13-15 times after 160 hours, and the increased rate of concentration versus time in unsaturated zone was about 10 times higher than in saturated zone. The fluctuation of Rhodamine WT breakthrough curve and concentration variation rate with time in saturated zone were larger than in unsaturated zone. Rhodamine WT concentration ratio with the distance from the injection well in saturation zone was linearly decreased faster than in unsaturated zone, and the elapsed time necessary for the concentration ratio less than 2 was longer in saturation zone. The differences resulted from the lower concentration and slower hydrodynamic dispersion of Rhodamine WT at the saturation zone of the multi-soil layer deposit, in which groundwater flow significantly flow and aquifer materials have high hydraulic heterogeneity. Effective porosity, longitudinal and transverse dispersivities were estimated $10.19{\sim}10.50%,\;0.80{\sim}1.98m$ and $0.02{\sim}0.04m$, respectively. The field longitudinal dispersivity is over 12 times larger than the laboratory longitudinal dispersivity by the scale-dependent effect.

Synthesis of PbMo1-xCrxO4 Oxides Prepared Using Hydrothermal Process and their Photocatalytic Activity (수열합성법에 의한 PbMo1-xCrxO4 산화물의 합성 및 광촉매 활성)

  • Song, Young In;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.714-718
    • /
    • 2015
  • Both lead molybdate ($PbMoO_4$) and chromium substituted lead molybdate ($PbMo_{1-x}Cr_xO_4$) were successfully synthesized using a conventional hydrothermal method and characterized by XRD, DRS, Raman, SEM and PL. We also investigated the photocatalytic activity of these materials for the decomposition of rhodamine B under UV-visible irradiation. The XRD and Raman results revealed the successful synthesis of well-crystallized $PbMoO_4$ crystals with the diameter of 51-59 nm, regardless of the addition of chromium ion. The DRS spectra of $PbMo_{1-x}Cr_xO_4$ catalysts showed new intensive absorption bands in the visible region. The $PbMoO_4$ catalysts showed the lowest photocatalytic activity and the activity increased with an increase of chromium substitution amounts under visible irradiation. PL peaks appeared at about 540-580 nm for all catalysts and excitonic PL signals were proportional to the photocatalytic activity for the decomposition of rhodamine B.

Binary and Ternary Competitive Adsorption of Basic Dyes from Aqueous Solution onto the Conchiolin Layer (수용액에서의 이성분 및 삼성분 염기성 염료의 진주층에 대한 경쟁흡착)

  • Shin, Choon-Hwan;Song, Dong-Ik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.270-275
    • /
    • 2006
  • The cultivated pearls collected for the study were pretreated through the removal of contaminants and the surface bleaching for easy dyeing. Coloring of pearls are necessary after selecting dyes adsorbable to the Conchiolin layer, a kind of hard protein formed in the seawater, covering the surface of the pretreated pearls. Dyes adsorbable to the Conchiolin layers are mostly basic dyes such as Rhodamine 6G(R6G), Rhodamine B(RB), Methylene Blue(MB) etc. and the binary and ternary competitive adsorption were performed by mixing two or three dyes together. The multi-dye adsorption data were compared with the predictions from the ideal adsorbed solution theory(IASI) combined with the single-dye adsorption model, the Langmuir or the Redlich-Peterson(RP) model. The quality of prediction was compared by using determination coefficient($R^2$) and standard deviation(SSE) values. Predictions from the IAST were found to be in good agreement with the data for the R6G/RB binary adsorption to the pearl layers not fractionated with their size, except for the adsorption data for RB at high concentrations. Among the three binary adsorption systems, R6G/RB, R6G/MB, and MB/RB, only the RB sorption data in the R6G/RB binary system was in poor agreement with the IAST prediction. Competitive adsorption data in ternay systems were in good agreement with the predictions from the IAST except for the RB data.

Delivery of Ti Plasmid into Nicotiana sanderae Protoplasts via Liposomes (Liposome을 이용한 Ti Plasmid의 꽃담배 원형질체내 도입)

  • Lim, Myung-Ho;Jeong, Jae-Dong;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.343-348
    • /
    • 1994
  • Ti plasmid of A. tumefaciens was labeled with $^3H-thymidine$, purified and encapsulated into phosphatidylserine (PS) and PS-cholesterol (Chol; 1 : 1 molar ratio) liposomes by lyophilization-rehydration method. PS was supplemented with 1 mole percent octadecyl rhodamine B for fluorometric measurement of PS. Liposomes entrapping $^3H-Ti plasmid$ were fused with Nicotiana sanderae protoplasts by treating with 5 mM $CaCl_2$ and 10% PEG. The fusion was evidenced by fluorescence microscopic technique. The amounts of Ti plasmid and PS associated with protoplasts were assayed by the radioactivity of $^3H-Ti plasmid$ and by the fluorescence of rhodamine B. About 7.9% of the PS liposome and 7.2% of PS-Chol liposome were fused with protoplasts. During the fusion process, about 30% of the liposomal contents of PS-Chol liposome was leaked, in contrast to about 60% leakage of its contents in PS liposome. Accounting the number of liposomes fused with protoplasts together with the encapsulation efficiency and the leakage of liposomal contents, it was calculated that ca. 1,700 Ti plasmid was transfered into one protoplast by the present method. This result may indicates that the present method transfers enough Ti plasmid into plant protoplast to elicit genetic transformation of plants.

  • PDF

Photocatalytic Decomposition of Rhodamine B over BiVO4 Doped with Samarium Ion (Sm 이온이 도핑된 BiVO4에서 로다민 B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.146-151
    • /
    • 2021
  • Pure and Sm ion doped BiVO4 catalysts were synthesized using a conventional hydrothermal method and characterized by XRD, DRS, SEM, and PL. We also examined the activity of these materials on the photocatalytic decomposition of rhodamine B under visible light irradiation. The doping of Sm ion into BiVO4 catalyst changed the ms-BiVO4 crystal structure into the tz-BiVO4 crystal structure in the low synthesis temperature. Light absorption analysis using DRS showed that all the catalysts displayed strong absorption in the visible range of the electromagnetic spectrum regardless of Sm ion doping. In addition, an amorphous morphology was shown in the pure BiVO4 catalyst, but the morphology of the BiVO4 catalyst doped with Sm ion was changed into an ellipse shape and also the particle size decreased. In the photocatalytic decomposition of rhodamine B, Sm ion doped BiVO4 catalyst showed higher photocatalytic activity than the pure BiVO4 catalyst. In addition, the Sm3-BVO catalyst doped with 3% Sm ion showed the highest photocatalytic activity, as well as the highest formation rate of OH radicals (•OH) and the highest PL peak. This result suggests that the formation rate of OH radicals produced in the interface between the photocatalyst and water is well correlated with the photocatalytic activity.