• Title/Summary/Keyword: Rhizoctonia blight

Search Result 72, Processing Time 0.027 seconds

Purification and Properties of Trehalase from Rhizoctonia solani (Rhizoctonia solani가 생산하는 Trehalase의 정제 및 특성)

  • 오태광;서영배;고영희
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 1992
  • Nonregulatory trehalase has been purified from mycelia of Rhztoctonia solani. a pathogen of rice sheath blight. Purification procedures involved sonification, gel filtration and fast protein liquid chromatography. Purity was confirmed by isoelectric focusing with silver staining. The purified trehalase was estimated to have a molecular weight of 54,000 and pI point of 5.1. Maximal activity was observed at pH 5.4 and temperature $45^{\circ}C$. The purified trehalase exhibited on apparent Km for trehalose of 3.11 mM and a Vmax of 105.3 $\mu mol min^{-1}\times mg^{-1}$. Validamycin, a commercial antibiotics of rice sheath blight, was a non-competitive inhibitor of Rhzzoctoniu solani trehalase.

  • PDF

Identification and Pathogenicity of Rhizoctonia species Isolated from Turfgrasses (잔디에서 분리한 Rhizoctonia spp.의 동정과 병원성)

  • Lee, Du-Hyung;Choe, Yang-Yun;Lee, Jae-Hong;Kim, Jin-Won
    • The Korean Journal of Mycology
    • /
    • v.23 no.3 s.74
    • /
    • pp.257-265
    • /
    • 1995
  • Morphological characteristics and pathogenicity of Rhizoctonia species causing blight diseases of turfgrasses were studied. The species were identified as Rhizoctonia cerealis Van der Hoeven, R. oryzae Ryker et Gooch, and R. solani $K{\ddot{u}hn}$ based on their morphological and cultural characteristics. Isolates of R. solani were assigned to anastomosis groups (AG) with cultural type 1 (1A), 2-2 (IIIB), and 2-2 (IV). R. cerealis, R. oryzae and R. solani induced sheath rot and foliar blight symptoms on creeping bentgrass (Agrostis palustris) and zoysiagrass (Zoysia japonica). Inoculation tests showed that disease severity with isolates of R. cerealis and R. oryzae were more serious to creeping bentgrass than zoysiagrass. AG 1(1A) isolates of R. solani were strongly pathogenic on creeping bentgrass, but moderate to zoysiagrass. AG 2-2 (III) isolates were moderately pathogenic to zoysiagrass, but weakly to creeping bentgrass. AG 2-2 (IV) isolates from zoysiagrass were moderately pathogenic to zoysiagrass, but weakly to creeping bentgrass.

  • PDF

Identification and Pathogenicity of Rhizoctonia spp. isolated from Turfgrasses in Golf Courses in Korea (골프장 잔디에 병을 일으키는 Rhizocatonia의 동정 및 병원성)

  • 심구열;이희구
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.3
    • /
    • pp.235-252
    • /
    • 1995
  • Turfgrass Rhizoctonia blight is a severe disease in golf courses in Korea. Attempts were made in 1989 to 1994 to identify the Rhizoctonia species associated with turfgrass blights and also to examine their epidemiology. A total of 120 Rhizoctonia isolates collected were identified as R. solani AG1, R. solani AG2-2, R. cerealis(AG-D) and R. oryzas from brown patch, large patch, yellow patch and white patch, re-spectively. R. solani AG1 was mostly associated with brown patch of cool-season grasses. and most frequently isolated in June through July and also in September. R. solani AG2-2 was isolated exclusively from zoysiagrasses from April to November, most frequently in June through July and October through November. R. cerealis was isolated frequently from both creeping hentgrass in March through April and in November, and zoysiagrass in April and July. Thermophilic R. oryzae was isolated only from creeping bentgrass in August, although with very low frequency. R. solani AG2-2 was strongly pathogenic specifically to Korean lawngrasses(Zoysia japonica, Z.matrella, Z. tenuifolia), but non-pathogenic to creeping bentgrass(Agrostis palustris), bermudagrass (Cynodon dactylon), Kentucky bluegrass(Poa pratensis), perennial ryegrass(Lolium prenne), and creeping red fescue(Festuca rubra subsp. ruhra L.). R. cerealis was strongly pathogenic to zoysiagrass and bentgrass only, but was isolate-specific i.e., from non-pathogenic to pathogenic, for other turfgrasses. The mycelial growth was optimum at relatively high temperature ranges of 25~30$^{\circ}C$ for R.solani AG1, AG2-2 and R. oryzae, while the mycelial growth of R. cerealis was initiated at $^{\circ}C$ and almost ceased at or above $^{\circ}C$.

  • PDF

Preventive Effect of Ebelactone B, an Esterase Inhibitor on Rice Sheath Blight Caused by Rhizoctonia solani

  • Chun, Hyo-Kon;Ko, Hack-Ryong;Moon, Hang-Sick;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.335-340
    • /
    • 1995
  • Two types of Rhizoctonia solani esterases induced by cutin hydrolysate were partially purified by ammonium sulfate precipitation and gel filtration. The esterase I with hydrolyzing activity toward both ${\rho}-ni-trophenyl$ butyrate and ${\rho}-nitrophenyl$ palmitate and the esterase II with hydrolyzing activity toward only ${\rho}-ni-trophenyl$ butyrate were inhibited by ebelactone B, an esterase inhibitor produced by actinomycetes with $IC_{50}$ values of 0.01 and $0.09{\;}\mu\textrm{g}/l$, respectively. Spraying on rice seedling with ebelactone B at a concentration of $30{\;}\mu\textrm{g}/ml$ completely suppressed infection by R. solani. Ebelactone B could not protect the wounded rice seedling and did not show any inhibitory effect on the mycelial growth at a concentration of 1 mg/ml. These results indicate that ebelactone B, an esterase inhibitor protects rice plants from infection with R. solani by inhibition of penetration, not through fungitoxic or fungicidal effect.

  • PDF

Efficacy of Antagonistic Bacteria for Biological Control of Rhizoctonia Blight (Large patch) on Zoysiagrass (잔디 갈색퍼짐병(Large patch)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Kim, Bong-Su;Im, Jae-Seong;Lee, Jae-Ho;Kim, Jin-Won
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Rhizoctonia blight (large patch) caused by Rhizoctonia solani AG2-2 is one of the major diseases on zoysiagrass in golf courses. In this study, anatgonistic bacteria to R. solani AG2-2 were selected in vitro tests using confrontation bioassay and triple layer agar diffusion method. The most active bacteria, Bacillus subtilis CJ-9 were tested for controlling large patch in pots. Relative Performance Indies (RPI) was used as a criterion for the selection of potential biocontrol agent. B. subtilis CJ-9 showed resistance to major synthetic agrochemicals used in golf course. In field tests at golf course, B. subtilis CJ-9 was more effective in suppression of large patch severity and population development of R. solani AG2-2 in soil than chemical fungicides. B. subtilis CJ-9 could be an alternative to chemical fungicides for eco-friendly management of large patch on zoysiagrass.

Antagonism of Pseudomonas spp. against to Rhizoctonia solani and Pythium spp. (Pseudomonas spp.의 Rhizoctonia solani 및 Pythium spp. 병원균에 대한 길항작용)

  • 주영규;한정훈
    • Asian Journal of Turfgrass Science
    • /
    • v.8 no.1
    • /
    • pp.47-52
    • /
    • 1994
  • Attempts were made to investigate the antagonistic activity of soil borne microorganisms Pseudomonas spp. and Trichoderma spp. against to the pathogens of turf diseases Rhizoctionia solani spp. and Pythiom spp. in vitro by a dual culture bioassay. Inhibition zone between the edge of the my-celium and the margin of each antagonistic bacteria, Pocudontonas, on potato dextrose agar was measured 3 days after incubation at 28˚C. Psudomonas spp. showed relatively high inhibition of mycelium growth of R. solani AG-i and Pythium spp. which cause brown patch and pythium blight, respectively. Antagonistic fungi Trichodenma spp. also showed effective inhibition against mycelium growth of both pathogens, more proper methods of measuring the inhibition effects were required because of fast growth of Trichodenna hypae. Brown patch and pythium blight both, re-quire most higher rate of fungicide use to control in golf curses in Korea. Application of antagon-istic microorganisms are useful as biological resources an approach to sole environmental contamination.

  • PDF

Stem Rot of Gondre Caused by Rhizoctonia solani AG-2-2(IV)

  • Wan-Gyu Kim;Gyo-Bin Lee;Hong-Sik Shim;Weon-Dae Cho
    • The Korean Journal of Mycology
    • /
    • v.51 no.2
    • /
    • pp.141-146
    • /
    • 2023
  • Stem rot symptoms were observed in Gondre (Cirsium setidens) plants growing in a vinyl greenhouse in Taebaek, Korea during a disease survey in June 2022. The plants presented with dark brown to black rot on the stems at or above the soil line. Severely diseased plants displayed wilt and blight. Disease incidence among these plants ranged from 1 to 5%. Three isolates of Rhizoctonia sp. were obtained from the stem lesions of diseased plants. All isolates were identified as Rhizoctonia solani AG-2-2(IV) based on the morphological and cultural characteristics, results of the anastomosis test, and phylogenetic analysis. The pathogenicity of the isolates to Gondre plants was confirmed using an artificial inoculation test. The lesions induced by the inoculation test were similar to those observed in the investigated vinyl greenhouse. Here, we report a case of R. solani AG-2-2(IV) causing stem rot in Gondre.

Identification and Pathogenicity of Binucleate Rhizoctonia Isolates Causing Leaf Blight(Yellow Patch) in Turfgrass (잔디의 잎마름증상(Yellow patch)을 일으키는 2핵성 Rhizoctonia의 동정 및 병원성)

  • 김진원;심규열;김호준;이두형
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.99-111
    • /
    • 1992
  • Yellow patch as leaf blight caused by binucleate Rhizoctonia occured in bentgrass (Agrostis Palustris Huds), zoysiagrass (Zoysia japonica Steud) and Kentucky bluegrass (Poa pratensis L.) from several golf couses in Korea. Binucleate Rhizoctonia was isolated from the infected lesions and was identified Rhizoctonia cerealis. Rhizoctonia cerealis infected crown, stem and leaf tissue, and the symptom was light yellow circular patch upto 1 m in diameter on bentgrass golf green. Individual infected leaf near the margin of patch developed first red and finally turn brown. As zoysiagrass lawn, the symptom was 30~40cm circular patch that occured zoysiagrass shooting time as spring, and there could not sheeted in severe lesion. In case of sheeted, zoysiagrass was first irregular leaf sopt and finally dead. Hypha diameter of Rhizoctonia cerealis was $2.5~6.3\mu\textrm{m}$(average $3.8\mu\textrm{m}$) and colar was white to buff. Monilioid cell size was $5.8~12.5$\times$13.8~37.5\mu\textrm{m}$. Sclerotia size was 0.2~2.0mm and color was white to brown. Optium temperature for the hypha growth was $23^{\circ}C$. There was a little difference in pathogenicity among the isolates.

  • PDF

Ecological Studies on Rice Sheath Blight Caused by Rhizoctonia solani II. Forecasting and Control of Rice Sheath Blight (벼잎집무늬마름병의 생태학적연구 II. 발생예찰과 방제)

  • Kim Chang Kyu;Min Hong Sik
    • Korean journal of applied entomology
    • /
    • v.22 no.1 s.54
    • /
    • pp.21-25
    • /
    • 1983
  • To develop forecasting methods of rice sheath blight caused by Rhizoctonia solani, two rice cultivars Jinheung (Japonica type) and Yushin (Tongil type) were used from 1976 to 1981. Severity of rice sheath blight disease at maturing stage was estimated by top lesion height, percentage of top lesion height vs. plant height in July and lesion index on September 11. The relationship between top lesion height on July 11 and degree of damage at maturing stage for a cultivar Yushin was represented by the equation of Y=4.64x-13.2, and $r=.840^{**}$, where Y is degree of damage by shea4h blight at maturing stage and x is top lesion height on July 11. Considering the percentage of infected hills/stems was rapidly increased from July 11 to August 1, the most effective period and time for fungicide spray were considered July 15 and July 25 or July 25 and August 5.

  • PDF

Effect of a Microbial Product on the Control of Soilborne Diseases of Turfgrasses (미생물제에 의한 잔디의 토양전염병 방제 효과)

  • 박규진;김영호;박은경;김동성
    • Plant Disease and Agriculture
    • /
    • v.1 no.1
    • /
    • pp.19-29
    • /
    • 1995
  • A microbial product composed of three antagonistic fungal isolates (Aspergillus sp., Penicillium sp. and Trichoderma sp.) and three bacterial isolates (Arthrobacter sp., Bacillus sp., and Pseudomonas sp.) was tested for the control of Pythium blight caused by Pythium sp., brown patch by Rhizoctonia solani (anastomosis group(AG) 1-1) and large patch by R. solani (AG 2-2) of turfgrasses. Cultures of the antagonistic fungi and bacteria varied in the effectiveness in reducing disease severity of Pytium blight and brown patch on bentgrass. The antagonistic fungal and bacterial isolates were mixed and cultured at 20-$25^{\circ}C$ for 3 days in a growth medium, and the diluted solution of the microbial culture was applied under the field conditions after inoculation of the above turfgrass pathogens. The treated turfgrass was incubated at 28$^{\circ}C$ in a growth chamber. In this experiment, Pythium blight was almost completely controlled and brown patch was slightly decreased by the microbial product, while no control was observed in large patch of zoysiagrass. In zoysiagrass treated with the microbial culture, thatch accumulation was notably reduced.

  • PDF