• Title/Summary/Keyword: Rheology Forming

Search Result 49, Processing Time 0.022 seconds

Effect of surfactant adsorption on the rheology of suspensions flocculated by associating polymers

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2003
  • Associating polymers act as flocculants in colloidal suspensions, because the hydrophobic groups (hydrophobes) can adsorb onto particle surfaces and create intermolecular cross-linking. The steady-shear viscosity and dynamic viscoelasticity were measured for suspensions flocculated by multichain bridging of associating polymers. The effects of surfactant on the suspension rheology are studied in relation to the bridging conformation. The surfactant molecule behaves as a displacer and the polymer chains are forced to desorb from the particle surfaces. The overall effect of surfactant is the reduction of suspension viscosity. However, the additions of a small amount of surfactant to suspensions, in which the degree of bridging is low, cause a viscosity increase, although the number of chains forming one bridge is decreased by the forced desorption of associating polymer. Since the polymer chains desorbed from one bridge can form another bridge between bare particles, the bridging density over the system is increased. Therefore, the surfactant adsorption leads to a viscosity increase. The surfactant influences the viscosity in two opposing ways depending on the degree of bridging.

Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions

  • Park, Dae-Geun;Kim, Won-Jong;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.143-149
    • /
    • 2000
  • In this article, we considered shear-induced microstructure and rheological behavior of micellar solutions of cationic surfactant, cetylpyridinium chloride (CPC) in the presence of a structure-forming additive, sodium salicylate (NaSal). Shear viscosity, shear moduli and flow birefringence were measured as functions of the surfactant and additive concentrations. In the presence of NaSal, the micellar solution exhibited the non-linear rheological behavior due to the formation of supramolecular structures when the molar ratio of NaSal to CPC exceeded a certain threshold value. Flow birefringence probed the change in micelle alignment under shear flow. At low shear rates, the flow birefringence increased as the shear rate increased. On the other hand, fluctuation of flow birefringence appeared from the shear rate near the onset of shear thickening, which was caused by shear-induced coagulation or aggregation. These results were confirmed by the SEM images of in situ gelified micelle structure through sol-gel route.

  • PDF

Continuous Fabrication Process of Rheology Material by Rotational Barrel Equipment (회전식 바렐 장치에 의한 레올로지 소재의 연속 제조 공정)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.103-106
    • /
    • 2004
  • The new rheology fabrication process has been developed to rheo die casting and rheo forming process. Thixoforming process has disadvantages in terms of induction reheating process, scrap recycling, loss of raw material and cycle time. Therefore, to reduce the number of process, new rheology fabrication process with specially designed the rotational barrel type equipment has been proposed to apply in various part productions. The barrel type equipment, which could continuously fabricate the rheology materil, was specially designed to have a function to control cooling rate, shear rate and temperature. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed. The barrel surface has both the induction heating system and the cooling system to control the temperature of molten metal. By using this system, the effect of the rotation speed and the rotation time on the microstructure was widely examined. The possibility for the rheoforming process was investigated with microstructural characteristic.

  • PDF

Computing transient flows with high elasticity

  • Roger I. Tanner;Xue, S-C
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.143-159
    • /
    • 2002
  • Although much progress has been made in the computation of Eulerian steady flows with high viscoelasticity, less work has been done for the case of transient flows. Because of their importance in injection moulding, blow moulding and other forming processes, as well as their Intrinsic interest, we believe more attention should be focussed in this area. Hence in this paper we review progress in unsteady flow computations with high elasticity, and show some new results in this area.

Development of Arm Part by Indirect Press Process with Electromagnetic Stirring Application (간접가압방식에 의한 전자교반응용 암 부품 개발)

  • Ko J. H.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.340-343
    • /
    • 2005
  • This paper focuses on an rheo-forming of arm part fabricated by electromagnetic stirring system (EMS). This forming process take place under high pressure of high pressure die casting and thin walled casting is possible. Also the productivity is better than low pressure die casting because of shorter cycle time. The advantages of rheo-forming are performed in the semi solid state with laminar flow and the gas content is low, which makes welding possible. Therefore this research applies for arm part with EMS and has investigated the mechanical propriety after T6 and T5 heat-treatment.

  • PDF

Analysis of A356 alloys filling behavior considering Two-Phase flow (Two-Phase Flow를 이용한 A356 합금의 충전거동 해석)

  • Seol, D.E.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • A semi-solid forming technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forging. In this study, the numerical analysis of semi-solid filling has been studied with solid fraction fs = 30% of A356 aluminum alloys. The finite difference program of two-phase flow model of Navier Stokes' equation coupled with heat transfer and solidification has been developed to predict a filling pattern, liquid segregation and temperature distribution of semi-solid metals. It gives die filling patterns and final solidification area. It can predict mechanical properties of semi-solid forming processes.

  • PDF

A Study on the Flow Behaviors of the Multi-Pass Ironing Process by the Finite Element Method (유한 요소법을 이용한 다단식 아이어닝 공정의 유동특성에관한 연구)

  • 양동열;이성근;이경훈
    • The Korean Journal of Rheology
    • /
    • v.1 no.1
    • /
    • pp.36-45
    • /
    • 1989
  • 아이어닝 공정은 제품의 치수정밀도가 정확하게 조절괴는 정밀 금속 성형공정이다. 아이어닝 공정은 대개 냉간상태에서 행하여지며 그리고 때로는 단공정 대신에 다단식이 적 용된다. 본연구의 목적은 강소성 유한 요소법으로 단공정과 다단식 아이어닝 공정을 해석하 여 아이어닝 공정에 대한 적절한 설계변수와 최적 설계조건을 찾는데 있다. 본 연구에서는 공정설계게 있어서 공정변수를 다이의 원추각과 단의 개수로 주었다. 본 해석에서는 단공정 아이어닝과 다단식 아이어닝 공정의 성형하중, 응력과 변형도 분포 그리고 격자 변형을 계 산하였다 그리고 이 값들에 대한 공정 변수의 영향을 검토한 결과 성형하중과 격자 변형에 있어서 계산 결과와 잘 일치하였다.

  • PDF

Simulations of pendant drop formation of a viscoelastic liquid

  • Davidson Malcolm R.;Harvie Dalton J.E.;Cooper-White Justin J.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.41-49
    • /
    • 2006
  • A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are rep-resented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the 'bead-on-a-string' effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.

Fabrication Process of Rheology Material Thin Plate Using Vacuum Low Pressure Die-casting Process with Electromagnetic Stirring (레오로지 박판의 전자교반을 응용한 진공 저압주조 제조공정)

  • Jang, Sin-Kyu;Bae, Jung-Woon;Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • In this study, we develop the lower pressure die casting with rheo-forming process of A356 aluminum alloy and vacuum system which can control the crystal size and obtain the high strengthened-light material. Using this process, we fabricate the thin plate for bipolar plate through the low pressure die casting with electromagnetic stirring and vacuum-evacuation which can control the crystal grain by electromagnetic stirring. Thin plate ($110mm{\times}130mm{\times}1mm$) is fabricated by this process. The average Vickers hardness of thin plate is about 77 HV.

A Study on Rheology Characteristics of Ag Paste for Screen Printing Method for Silicon Solar Cells Electrodes Capable of Forming High Aspect Ratio (고온 소결형 실리콘 태양 전지의 High Aspect Ratio 전극 형성이 가능한 Ag 페이스트의 레오로지 특성 연구)

  • Oh, Tae-Hun;Kim, Sung-Bin;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Photovoltaic solar cells are all in the incident because they are not converted into electrical energy, high-efficiency solar cells in order to reduce the loss of elements must be. Significant factor in the loss of solar cells, optical loss and electrical loss can be divided into. Optical losses occur when the sun will be joined on the surface of the reflection, the shadow loss due to electrodes, and the losses are in the solar wavelengths. Commercialization is currently the most common solar cells on the front of the light incident on the electrode is formed. Therefore, the shadow caused by the electrode to cover the dead area of the sun, due to factors that hinder the absorption of sunlight which is shadowing them and conversion efficiency of solar cells is the inhibition factor. These barriers to eliminate the electrode linewidth reduces the shadowing to reduce, but simply of the electrode line width is reduced electrode area by reducing the series resistance elevates this because to improve the electrode Aspect ratio(height/width) to increase Ag development of paste is required. In this study, aspect ratio of screen-printing method to increase the electrode Ag paste composition of the binder for the characterization of rheology in the shadow of the electrode by reducing the optical loss of the photoelectric conversion efficiency of solar cells to boost the performance measures was. Properties and printability of the paste, the binder resin sintered characteristics that affect the thermal properties are excellent with a good screen printability acrylic resin, ethyl cellulose, using a resin were evaluated. Prepared paste rheology properties, was formed to evaluate the electrode conductivity and aspect ratio.