• Title/Summary/Keyword: Rheology

Search Result 1,478, Processing Time 0.035 seconds

Optimization of Process Condition for Processing of Jujube Fruit Jungkwa (대추 정과 제조를 위한 제조조건의 최적화)

  • Hong, Ju-Yeon;Nam, Hak-Sik;Youn, Kwang-Sup;Woo, Sang-Chul;Shin, Seung-Ryeul
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.527-534
    • /
    • 2011
  • The purpose of this studies was analyzed moisture content, rheology and sensual test of jujube jungkwa by addition of water, sugar, fructose at processing of jujube jungkwa for development the optimization for processing of jujube jungkwa. The changes of moisture contents at process condition of jujube jungkwa were increased by increasing of sugar and water quantity. And moisture contents of jujube jungkwa were increased by high fructose quantity and low sugar quantity, but were decreased by high sugar and fructose quantity. The 'b' values of jujube jungkwa at low sugar quantity were decreased by the increasing of water quantity, but increased at high sugar quantity. The cohesiveness of jujube jungkwa at 0.03 kg of fructose were high by the increasing of sugar quantity, but those at 0.065 kg of fructose were high by the decreasing of sugar quantity. And those at 0.050 kg of fructose were similar without the quantity of sugar. The sweet taste of jujube jungkwa were increased by the increasing of water and fructose quantity. The characteristics of jungkwa at conditions of processing for the best quality of jujube jungkwa were 18-20% of moisture content, 2.0-3.0 of 'b' values, 3.0-3.2 of color scores, and 3.3-3.4 of sweet taste scores. The conditions of processing for the best quality of jujube jungkwa were determined to 0.95-1.04 L of water, 0.052-0.060 kg of fructose at 0.95 kg of sugar.

Physical Effect of Adding Stone Dust Sludge on the Properties of Cement Mortar (석분슬러지 혼입이 시멘트 모르타르 특성에 미치는 물리적 영향)

  • Seo, Jun-Yeong;Choi, Seon-Jong;Kang, Su-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.152-158
    • /
    • 2015
  • In order to investigate the feasibility of stone dust sludge as fine aggregate, an experimental study was performed on cement mortar with stone dust sludge. fresh mortar properties and strength with various stone dust sludge replacement ratios were estimated. the replacement ratio adopted in this study was 0, 10, 20, 30%. Flow, air content, and rheological properties were considered as properties of fresh mortar. Compressive strength and flexural tensile strength were measured for strength. The results are as follows. Higher amount of stone dust sludge caused reduction in slump and air content. In the rheological properties, both yield stress and plastic viscosity increased as stone dust sludge content increased up to 20% replacement ratio, but there were no remarkable difference between 20 and 30%. Yield stress increased drastically between 10 and 20%. Compressive and flexural tensile strength results indicated that the strength variation was not significant according to stone dust sludge content, but the strength gain in the early age by adding stone dust sludge was evident. the strength at the age of 28 days however did not show noticeable effect of adding stone dust sludge.

Changes in Organoleptic and Rheological Properties of Chinese Cabbage with Salting Condition (배추의 절임조건에 따른 관능적 특성 및 물성 변화)

  • Lee, Myung-Hee;Lee, Gee-Dong;Son, Kwang-Jin;Yoon, Sung-Ran;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.417-422
    • /
    • 2002
  • Salting conditions on organoleptic properties and rheology of Chinese cabbage were optimized and monitored by four-dimensional response surface methodology. Experimental conditions were decided in the ranges of salt concentration 8∼12%, salting time 5∼25 hr and salting temperature 5∼15$^{\circ}C$. The salted Chinese cabbage with experiment design was measured on organoleptic and physical properties. The organoleptic form of the salted Chinese cabbage showed maximum score in 11.28% of salt concentration, 9.75 hr of salting time and 12.81$^{\circ}C$ of salting temperature. The organoleptic taste was maximized in 11.19% of salt concentration, 11.38 hr of salting time and 13.58$^{\circ}C$ of salting temperature. The organoleptic mouth-feel was maximized in 11.24% of salt concentration, 11.71 hr of salting time and 13.57$^{\circ}C$ of salting temperature. The organoleptic palatability was maximized in 11.52% of salt concentration, 12.86 hr of salting time and 13.07$^{\circ}C$ of salting temperature. In rheological properties of salted Chinese cabbage, hardness and chewiness decreased with the increase of salt concentration.

Rheological Properties of Sweet Potato Starch-sucrose Composite (고구마전분-sucrose 복합물의 레올로지 특성)

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.184-189
    • /
    • 2008
  • Effects of sucrose at different concentrations (0, 10, 20, and 30%, w/w) on steady and dynamic shear rheological properties of sweet potato starch (SPS) paste (5%, w/w) were investigated. The steady shear rheological properties of SPS-sucrose composites were determined from rheological parameters based on power law and Casson flow models. At 25$^{\circ}C$ all the samples showed pseudoplastic and thixoropic behavior with high yield stress. Consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$) values of SPS-sucrose composites decreased with increasing sucrose concentration from 10% to 30%. The decrease of swelling power was observed at higher sucrose concentration (>20%) and the low swelling power yielded a lower K, ${\eta}_{a,100}$, and ${\sigma}_{oc}$ values. In temperature range of 25-70$^{\circ}C$, Arrhenius equation adequately assessed variation with temperature. Oscillatory test data showed weak gel-like behavior. Magnitudes of storage (G') and loss (G") moduli increased with an increase in sucrose concentration and frequency. The SPS-sucrose composite at 30% concentration closely followed the Cox-Merz superposition rule.

Effects of Alkaline Reagent on the Rheological Properties of Wheat Flour and Noodle Property (알칼리제가 밀가루의 리올로지와 국수의 성질에 미치는 영향)

  • Kim, Sung-Kon;Kim, Heung-Rae;Bang, Jung-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.58-65
    • /
    • 1996
  • The effects of sodium carbonate (Na), potassuim carbonate (K) and their mixtures (Na/K=0.7-2.0) on pasting properties by amylograph and mixing properties by farinograph of wheat flour (9.45% protein), and of alkali mixtures (0.16%) on noodle property were examined. The concentrations of alkali used were 0.08%, 0.10% and 0.16% based on flour weight (14% mb). The salt (1.7%) and alkali decreased the initial pasting temperature but increased the amylograph peak viscosity. The peak viscosity increased with the increase of alkali concentration, but the mixing ratio at a fixed concentration had no effect on peak viscosity. The farinograph absorption decreased by salt, but the effect of salt diminished in the presence of alkali. The salt and alkali increased the farinograph stability, of which the former was more pronounced. The effect of alkali alone and mixtures in the presence of salt on amylograph and farinograph were essentially the same regardless the concentrations and mixing ratios. The yellowness and breaking force of dry noodle prepared with salt and alkali was higher than that prepared with salt only. The weight and volume gain of the optimum cooked noodle remained essentially constant, but the shear force and compression force were increased by the alkali.

  • PDF

Quality Characteristics of Noodle with Health-Functional Enzyme Resistant Starch (기능성 소재인 효소저항전분을 이용한 국수의 품질특성)

  • Mun, Sae-Hun;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.328-334
    • /
    • 2000
  • A study was conducted to investigate the effect of ACAMS(Autoclaved-cooled amylomaize VII) and ACNMS(Autoclaved-cooled normal maize starch) containing resistant starch(RS) on ASW (Australian wheat flour) rheology and noodle quality. The water absorption in farinograph increased with the addition of ACAMS and ACNMS, but the dough stability decreased with the addition. The ACNMS added flours showed the highest initial pasting temperature and the lowest peak viscosity in RVA. The addition of ACAMS and ACNMS were not effective on the weight and volume of cooked noodles during cooking time for 5 min. However, as the cooking time increased, noodle weight and volume were the highest in control(no RS added flour) and the lowest in ACNMS added flours. Noodle texture was evaluated using rheometer. The hardness of RS(ACAMS, ACNMS) added noodles was higher than that of control. Cohesiveness was significantly different between control and ACAMS added noodles, but the cohesiveness of ACNMS added noodles was similar to other noodles. The elasticity of ACNMS added noodles in sensory test was lower than that of control but the smoothness and overall acceptibility were higher.

  • PDF

RHEOLOGICAL PROPERTIES OF RESIN COMPOSITES ACCORDING TO THE CHANGE OF MONOMER AND FILLER COMPOSITIONS (단량체 및 무기질 filler 조성 변화에 따른 복합레진의 유변학적 특성)

  • Lee In-Bog;Lee Jong-Hyuck;Cho Byung-Hoon;Son Ho-Hyun;Lee Sang-Tag;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.520-531
    • /
    • 2004
  • The aim of this study was to investigate the effect of monomer and filler compositions on the rheological properties related to the handling characteristics of resin composites. Methods. Resin matrices that Bis-GMA as base monomer was blended with TEGDMA as diluent at various ratio were mixed with the Barium glass (0.7 um and 1.0 um), 0.04 um fumed silica and 0.5 um round silica. All used fillers were silane treated. In order to vary the viscosity of experimental composites, the type and content of incorporated fillers were changed, Using a rheometer, a steady shear test and a dynamic oscillatory shear test were used to evaluate the viscosity ($\eta$) of resin matrix, and the storage shear modulus (G'), the loss shear modulus (G"), the loss tangent ($tan{\delta}$) and the complex viscosity (${\eta}^*$) ofthe composites as a function of frequency ${\omega}{\;}={\;}0.1-100{\;}rad/s$. To investigate the effect of temperature on the viscosity of composites, a temperature sweep test was also undertaken. Results. Resin matrices were Newtonian fluid regardless of diluent concentration and all experimental composites exhibited pseudoplastic behavior with increasing shear rate. The viscosity of composites was exponentially increased with increasing filler volume%. In the same filler volume, the smaller the fillers were used, the higher the viscosities were. The effect of filler size on the viscosity was increased with increasing filler content. Increasing filler content reduced $tan{\delta}$ by increasing the G' further than the G". The viscosity of composites was decreased exponentially with increasing temperature.

Development of Yeast Leavened Pan Bread Using Commercial Doenjangs(Korean Soybean Paste): 2. Correlation between Factors Relating with Dough Extensibility and Bread Quality in Addition of Doenjang (시판 된장을 이용한 식빵 제조: 2. 된장 첨가에 따른 반죽 신장성 관련인자와 빵품질 특성과의 상관성 조사)

  • 오현주;김창순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.880-887
    • /
    • 2004
  • This study was carried out to examine the effect of added Doenjang on wheat flour dough and gluten rheological properties using Micro-extensigraph method and correlation between factors relating with Doenjang or dough rheology and bread Quality. There were big differences in pretense activity and free amino acid contents among seven commercial Doenjangs. The addition of Doenjang to wheat flour dough required increased mixing time for gluten development. Dry gluten content increased significantly with addition of less than 5.0% of Doenjang powder. As the amount of Doenjang powder increased, dough peak force decreased and extensibility increased up to a certain level an then decreased, producing the weak dough. This phenomena was seen more obviously in wet gluten than wheat flour dough. Especially, the Doeniang having high pretense activity and high cystein content, caused highly extensible weak dough resulting in bread with high loaf volume and tender texture at the levels of 2.5% added Doenjang. Increase of dry gluten content and extensibility of wheat flour dough or wet gluten positively correlated (r=0.76, 0.91, 0.93), with loaf volume and negatively with hardness values, respectively. Therefore, it was concluded that improvement of bread quality with Doenjang resulted from increase of gluten content and dough extensibility.

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method (층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가)

  • Lee, Il Wha;Jung, Young Ho;Lee, Min Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.

Effect of Rheological Properties on the Sedimentation of Capsules in an Aqueous Polymer Solution (고분자 수용액의 레올러지 특성이 캡슐의 침강에 미치는 영향)

  • Kim, Dong-Joo;Kim, Jung-Ah;Kyong, Kee-Yeol;Yoon, Moung-Suk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.85-89
    • /
    • 2005
  • An aim of this study is to study the correlation between rheological properties and sedimentation of capsules in aqueous polymer solution with low viscosity. Rheological properties of aqueous polymer solutions were controlled by carbomer (C), acylate/C10-30 alkyl acylate crosspolymer (AC), and ammonium acryloyldimethyltaurate/VP copolymer (AV). Small amount of polymer C solution had the highest viscosity and yield stress of polymer AV solution was higher than that of polymer C solution in the same viscosity when the concentration of polymer AV exceeded $0.35 wt\%$. Each aqueous polymer solution was tested and the results showed that as viscosity and yield stress increased, the sedimentation ratio of capsules decreased. The viscoelasticity data also showed the same tendency in a shear stress range of 0.1 to 2.0 Pa. These results demonstrated that the rheological properties of polymer solutions had a strong correlation with the sedimentation of capsules. When polymer I and AV were used, there was a synergistic effect and the correlation between rheological properties and sedimentation of capsules was very complicated. It was assumed that the characteristics of polymer structure and interaction between polymers caused this phenomena.