• Title/Summary/Keyword: Rheological variation

Search Result 71, Processing Time 0.022 seconds

Elastohydrodynamic Lubrication of Line Contacts Incorporating Bair & Winer's Limiting Shear Stress Rheological Model (한계전단응력형태의 Bair & Winer 리올로지 모델을 사용한 선접촉 탄성유체윤활해석)

  • 이희성;양진승
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.85-93
    • /
    • 1998
  • The Bair & Winer's limiting shear stress rheological model is incorporated into the Reynolds equation to successfully predict the traction and film thickness for an isothermal line contact using the primary rheological properties. The modified WLF viscosity model and Barus viscosity model are also adapted for the realistic prediction of EHD tractional behavior. The influences of the limiting shear stress and slide-roll ratio on the pressure spike, film thickness, distribution of shear stress and nonlinear variation of traction are examined. A good agreement between the disc machine experiments and numerical traction prediction has been established. The film thickness due to non-Newtonian effects does not deviate significantly from the fdm thicknesss with Newtonian lubricant.

Influence of Bingham Characteristics for ER Fluid on Semi-Active Suspension System (ER유체의 역학적 특성이 반능동 현가시스템에 미치는 영향)

  • 김옥삼;김일겸;조남철;박우철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.434-440
    • /
    • 2004
  • The electro-rheological fluids for semi-active suspension system are a class of colloidal dispersion which exhibit large reversible changes in their rheological behavior when they are subjected to external electrical fields. This paper presents Bingham properties of ER fluids subjected to temperature variations. In addition, an appropriate size of the ER damper for a passenger car is proposed to investigate the effects of Bingham characteristics on the damping performance. The filed-dependent damping forces are evaluated according to the temperature variation and sedimentation ratio.

Response Property of Multi-directional Mount Using Magneto-Rheological Fluid (MR유체를 이용한 다방향 제진형 마운트의 응답특성)

  • 안영공;신동춘;양보석;이일영;김동조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.517-523
    • /
    • 2003
  • This paper presents response property of the squeeze mode type mount using Magneto-Rheological fluid (MR fluid) . The MR mount for the isolation of multi-directional vibrations was constructed in this study. Both the mechanism and shape of the mount are the same as squeeze film dampers for a rotor system. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents In this study.

Performance Investigation of a Cylindrical Valve Featuring Electro-Rheological Fluids (전기유동유체를 이용한 실린더형 밸브의 성능 고찰)

  • Kim, K.S.;Jung, D.D.;Lee, H.J.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.148-157
    • /
    • 1994
  • A multi-cylindrical hydraulic valve incorporating with an electro-rheological(ER) fluid is developed in this study. Field-dependent Bingham properties of the ER fluid are exploited to devise the valve system which features fast system response as well as simple mechanism. The fast response is accrued from almost instant response characteristics of the ER fluid itself, and the mechanism configuration is simplified since no nechanically moving parts are required. The material properties of the ER fluids to be utilized for modeling of the proposed valve system are firstly tested with a couette-type electroviscometer. The design and manufacturing processes are then undertaken on the basis of model parameters. The performance characteristics of the valve system are evaluated in terms of pressure variations with respect to the intensity of employed electric fields and flow rates.

  • PDF

The Rheological Properties of Poly(acrylonitrile)/Cellulose Acetate Blend Solutions in N,N-Dimethyl Formamide (폴리아크릴로니트릴/셀룰로오스 아세테이트/N,N-디메틸포름아미드 용액의 유연학적 특성)

  • Park, Seung-Han;Song, In-Kyu;Kim, Byoung-Chul
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.384-388
    • /
    • 2009
  • The rheological properties of poly (acrylonitrile) (PAN) and cellulose acetate (CA) blend solutions in N,N-dimethyl formamide (DMF) were investigated in terms of temperature and blend composition. The solutions exhibited a very characteristic rheological behavior with variation of temperature. 8 wt% solution showed an increase of viscosity and a decrease of loss tangent as temperature was increased over the temperature range of 20 and $60^{\circ}C$. At $20^{\circ}C$ the physical properties of the solutions exhibited dependence on the blend composition. At 40 and $60^{\circ}C$, however, the effects of blend ratio on the physical properties notably diminished. The longer relaxation time at higher temperature indicated that the formation of physical structures resulting from intermolecular interactions was promoted with increasing temperature. The odd rheological responses were further elucidated by measuring of the physical properties of dilute solutions. The intrinsic viscosity of the solutions suggested that the coiled chain dimension was reduced with increasing temperature.

A Fundamental Study on Bingham Characteristics of Electro-Rheological Fluids for Control System Application (제어 시스템 적용을 위한 ER유체의 빙햄 특성에 관한 기초적 연구)

  • Jang, Sung-Cheol;Jeong, Young-Bin;Jang, Gil-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.86-92
    • /
    • 2004
  • This paper describes the properties of temperature-viscosity characteristics of hydrous and anhydrous electro-rheological fluids containing starch and titanium particle in silicone oil ER effects arise from electrostatic forces between the starch particles and titanium particles dispersed to the electrically insulating silicone oil induced when electric field is applied ER fluids under electric field control have been found to provide resonable estimates of ER fluid viscosity variation characteristics. Yield shear stress of the ER fluids were measured the couette cell type rheometer as a function of electrlc fields. The outer cup is connected to positive electrode(+) and bob becomes ground(-). The electrie field is applied by high voltage DC power supply. In this experiment shear rates were increased from 0 to 200 $s^{-1}$ in 2 minutes. The ER fluid's viscosity change is very small and stable at the temperature range of $40^{\circ}C$ to $60^{\circ}C$. Therefore, applications of a new ER fluid to control systems application are suitable.

  • PDF

Wind-Induced Vibration Control of a Tall Building Using Magneto-Rheological Dampers: A Feasibility Study

  • Gu, Ja-In;Kim, Saang-Bum;Yun, Chung-Bang;Kim, Yun-Seok
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • A recently developed semi-active control system employing magneto-rheological (MR) fluid dampers is applied to vibration control of a wind excited tall building. The semi-active control system with MR fluid dampers appears to have the reliability of passive control devices and the adaptability of fully active control systems. The system requires only small power source, which is critical during severe events, when the main power source may fail. Numerical simulation studies are performed to demonstrate the efficiency of the MR dampers on the third ASCE benchmark problem. Multiple MR dampers are assumed to be installed in the 76-story building. Genetic algorithm is applied to determine the optimal locations and capacities of the MR dampers. Clipped optimal controller is designed to control the MR dampers based on the acceleration feedback. To verify the robustness with respect to the variation of the external wind force, several cases with different wind forces are considered in the numerical simulation. Simulation results show that the semi-actively controlled MR dampers can effectively reduce both the peak and RMS responses the tall building under various wind force conditions. The control performance of the MR dampers for wind is found to be fairly similar to the performance of an active tuned mass damper.

  • PDF

Rheological Properties of Hot Pepper-soybean Pastes Mixed with Acetylated Starches

  • Choi, Su-Jin;Chang, Hak-Gil;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.780-786
    • /
    • 2008
  • Effect of acetylated starches (acetylated rice starch and acetylated tapioca starch) on rheological properties of hot pepper-soybean paste (HPSP) at different mixing ratios of rice flour (RF) and acetylated starch (AS) (10/0, 9/1, 8/2, and 7/3) was evaluated in steady and dynamic shear. All HPSP samples at $25^{\circ}C$ exhibited shear-thinning (n=0.31-0.36) and thixotropic behavior with high yield stresses and their steady flow curves were well described by power law and Casson models. The presence of AS resulted in the decrease in consistency index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$), and their predominant decreases were noticed at higher ratio of RF to AS (7/3 ratio). Arrhenius temperature relationship represents variation with temperature in the range of $5-35^{\circ}C$ with the high determination coefficients ($R^2=0.97-0.99$). Dynamic moduli (G', G", and ${\eta}^*$) values of HPSP samples mixed with AS were lower than those of HPSP with no added AS within the experimental range of frequency (0.63-62.8 rad/sec). Steady and dynamic shear rheological properties of HPSP samples seem to be greatly influenced by the presence of acetylated starch.

The Effect of Injection Velocity on Liquid Segregation of Grain Controlled Rheological Material Considering Asymmetry Multi Thickness Variation (비대칭 다단 두께 변화를 고려한 결정입 제어 반용융 알루미늄 소재의 캐스팅에서 사출속도가 액상편석에 미치는 영향)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.338-350
    • /
    • 2005
  • Recently, in the field of automobile industry, to solve the problem of reducing the weight of automobile for the improvement of fuel efficiency and the protection of environment, the aluminum alloy parts have been substituted for the steel parts. However, the aluminum alloy does not have as good mechanical property as the steel part. To improve the mechanical property, the semi-solid die casting process is performed to make automobile parts. In the fabrication of semisolid material the control of the liquid segregation is very important to improve the material properties of aluminum alloy. In the present paper we examine the influence of the liquid segregation by the injection conditions in the semi-solid die casting has been investigated.