• 제목/요약/키워드: Rheological Material

검색결과 226건 처리시간 0.035초

자기유변유체 연마공정을 응용한 미세부품의 형상가공 (Farbrication of Repeated 3D Shapes using Magnetorheological Fluid Polishing)

  • 김용재;민병권;이상조;석종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1265-1268
    • /
    • 2005
  • Due to the increase of the need for reliable high density information storage devices, the demand for precise machining of the slider in HDD is rapidly growing. The present fabrication process of slider bears some serious problems such as low yield ratio in mass production, which is mainly caused by inefficient machining processes in shaping camber and crown on the slider. In order to increase slider yield ratio in HDD, a new systematic machining process is proposed and developed in this work. This new machining process includes the use of magnetorheological (MR) fluid, a smart polishing material generally used for ultra-fine surface finishing of micro structures. It is shown that the process proposed in this work enables to make camber and crown pattern in the scale of few tens of nanometers. Experiment results shows that the MR polishing can be also used for shaping process of micro structures.

  • PDF

Rheological, Mechanical and Structural Performances of Crushed Limestone Sand Concrete

  • Akrout, Khaoula;Mounanga, Pierre;Ltifi, Mounir;Jamaa, Nejib Ben
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권2호
    • /
    • pp.97-104
    • /
    • 2010
  • The crushed limestone sand is an abundant material in Tunisia, which induces many environmental problems. Indeed, available stocks of siliceous sand drastically decrease because of its massive use in hydraulic concrete. Some recent research works, carried out in Tunisia, concluded that crushed limestone sand may be used in concrete manufacture instead of siliceous sand traditionally used. In this context, an experimental study was achieved in order to quantify the influence of a partial or total substitution of siliceous sand by crushed limestone sand on hydraulic concrete performances. Preliminary chemical and physical tests on crushed sand indicated that it presented the minimum requirement for its use as aggregate in hydraulic concrete. 79 concretes were then prepared with siliceous sand, crushed limestone sand and a mix of the two sands. Their slump value and compressive strengths were measured on plain concretes. Complementary structural tests on reinforced concrete beam were also performed. The results proved that crushed limestone sand concretes showed workability and mechanical performances closed to those of siliceous sand concretes.

반복하중(反復荷重)을 받는 흙의 역학적(力學的) 특성(特性) (Mechanical Properties of Soil under Repeated Load)

  • 천병식;박흥규
    • 대한토목학회논문집
    • /
    • 제10권4호
    • /
    • pp.113-122
    • /
    • 1990
  • 도로(道路)의 노반(路盤)에 교통하중(交通荷重)이 반복해서 가해질 경우 흙 구조물의 설계기준을 얻기 위해 현장시험이 행해지고 있으나, 본 연구는 지금까지 잘 알려지지 않은 흙의 동력학적(動力學的) 성질(性質), 특히 반복응력(反復應力)을 받을 때의 성질을 규명한 것으로 유변학적(流變學的) 모델 해석에 의해 흙의 항복응력(降伏應力) 탄성계수(彈性係數)를 구하고 이에 대한 반복응력재하의 영향에 대해서 고찰(考察)한 것이다. 항복응력(降伏應力)은 재하횟수가 많을 수록 경화(硬化) 효과(效果)가 현저하므로 그 값이 크고, 어느 재하횟수에 달하면 한계치에 접근한다. 또한 탄성계수(彈性係數)는 반복응력이 작은 경우에는 재하횟수가 많을수록 현저하게 증가하고, 반복응력이 커지면 반대로 감소한다.

  • PDF

Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration

  • Cheng, Chih-Wen;Lee, Hsien Hua;Luo, Yuan-Tzuo
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1481-1501
    • /
    • 2015
  • MR-TLCD (Magneto-Rheological Tuned Liquid Column Damper) is a new developed vibration control device, which combines the traditional passive control property with active controllability advantage. Based on traditional TLCD governing equation, this study further considers MR-fluid viscosity in the equation and by transforming the non-linear damping term into an equivalent linear damping, a solution can be obtained. In order to find a countable set of parameters for the design of the MR-TLCD system and also to realize its applicability to structures, a series of experimental test were designed and carried out. The testing programs include the basic material properties of the MR-fluid, the damping ratio of a MR-TLCD and the dynamic responses for a frame structure equipped with the MR-TLCD system subjected to strong ground excitations. In both the analytical and experimental results of this study, it is found that the accurately tuned MR-TLCD system could effectively reduce the dynamic response of a structural system.

섬유보강 고강도 내화콘크리트의 레올로지 특성 분석 (Rheological Characteristics of Fiber-Reinforced High-Strength AFR Concrete)

  • 최선미;이범식;배기선;김상연;박수희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.543-544
    • /
    • 2009
  • 고강도콘크리트의 내화성능 증진에 효과적인 것으로 알려진 섬유(NY, PP)는 섬유의 길이조합과 혼입율에 따라 유동성에 차이가 있다. 본 논문에서는 섬유의 길이조합과 혼입율이 고강도콘크리트의 유동성과 레올로지 특성에 미치는 영향을 분석하기 위하여 몰탈시험체를 대상으로 미니 슬럼프 플로우(Mini slump-flow), 간이 V-lot 및 회전점도계에 의한 점도측정을 수행하였다. 실험결과, 섬유의 길이 조합에 따른 유동특성은 큰 차이가 없으나 섬유혼입률이 증가할수록 점도는 큰 것으로 나타났다.

  • PDF

PZT와 ER유체를 적용한 복합지능구조물의 진동제어 (Vibration Control of Hvbrid Smart Structure Using PZT Patches and ER Fluids)

  • 윤신일;박근효;한상보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.734-739
    • /
    • 2003
  • Many types of smart materials and control laws are available to actively adjust the structure from various external disturbances. Usually, a certain type of control laws to activate a specific smart material is well established, but the effectiveness of the control scheme is limited by the choice of the smart materials and the responses of the structure. ER fluid is adequate to provide relatively large control force, on the other hand, the PZT patches are suitable to provide small but arbitrary control forces at any point along the structure. It was found that active vibration control mechanism using ER fluid failed to suppress the excitation off the resonant frequency with changed structural characteristics along the frequency response function of the closed loop of the control system. To compensate this additional peak of the closed loop system, PPF control using PZT as an actuator is added to construct a hybrid controller.

  • PDF

실리콘기반 자기유변탄성체의 진동특성 연구 (A Study on the Vibration Characteristics of MR Elastomers Based on Silicon)

  • 박정헌;이철희;김철현;조원오
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.714-719
    • /
    • 2011
  • This paper presents vibration characteristics of magnetorheological(MR) elastomer, whose elastic modulus are controllable by applied magnetic field. By using this property, the material can be applied to vibration absorber, so that the stiffness of the absorber can be changed and actively controlled according to the magnetic flux density. However, the various performances of MR elastomer depends on different polarized direction of particles by applied magnetic field and dimension during the manufacturing process. In this paper, in order to obtain the optimal characteristics of MR elastomer, MR elastomers with different types and dimensions are prepared for a series tests. Using this test setup, extent of natural frequency shifted against magnetic field at various excitation frequencies can be measured. Specimens are prepared with 3 types, as cylinder samples exposed to magnetic field vertically, horizontally and unexposed during cure, respectively. Also, a set of design variables are considered to produce MR elastomers. Through the modal tests of mass structure with MR elastomer, the optimal design as well as the polarization direction of MR elastomer is obtained among the various dimensions and 3 directional types of MR elastomers.

차량용 MR충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • 제1권4호
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

ER 유체를 이용한 반능동 완충장치의 동적 특성 (Dynamic Characteristics of Semi-Active Shock Absorber Using Electrorheological Fluid)

  • 김도형;조기대;정용현;이인
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.13-21
    • /
    • 2001
  • Electrorheological(ER) fluid is a kind of smart material with variable shear stress and dynamic viscosity under various electric field intensity. Electric field can control the damping characteristics of ER damper. The objective of this study is the analysis of the performance of ER damper and its application to shock absorber. Idealized nonlinear Bingham plastic shear flow model is used to predict the velocity profile between electrodes. Cylindrical dashpot ER damper with moving electrode is constructed and tested under various electric fields. The analytic and experimental results for damping force are compared and discussed. Drop test system using ER damper is prepared to identify transient vibration characteristics. The rebound is eased as the applied electric field increases. When semi-active control algorithm is applied, rebound phenomenon disappears and vibration energy level decays faster than the case of zero electric field.

  • PDF