• Title/Summary/Keyword: Rheo-forming

Search Result 13, Processing Time 0.021 seconds

The Effect of Pressure on Liquid Segregation in Direct Rheo-Forging Process of Aluminum Alloys (알루미늄 소재의 레오로지 직접단조공정에서 가압력이 액상 편석에 미치는 영향)

  • Oh, S.W.;Bae, J.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.178-186
    • /
    • 2007
  • Rheo-forging process of aluminum alloy is suitable for large parts of net shape without defects and excellent mechanical properties in comparison with conventional die casting and forging process. To control the microstructure of the product with high mechanical properties in rheo-forming, solid fraction is required to prevent porosity and liquid segregation. Therefore, in rheo-forging process, die shape, pressure type and solid fraction are very important parameters. The defects such as porosity, liquid segregation and unfitting phenomena occur during rheo-forging process. To prevent these defects, mechanical properties and microstructure analysis of samples versus the change of pressure are carried out and the problem and its solutions are proposed. Also, the mechanical properties versus various pressures were compared with and without heat treatment. The alloys used for rheo-forming are A356 and 2024 aluminum alloy. The rheology material is fabricated by electromagnetic process with controlling current and stirring time.

Study on the Production of Aluminum Components by Direct Rheo Die Casting with Electromagnetic Stirrer

  • Roh, Joong-Suk;Heo, Min;Jin, Chul-Kyu;Park, Jin Ha;Kang, Chung-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_1
    • /
    • pp.541-547
    • /
    • 2020
  • This paper relates a rheo die casting using electromagnetic force, which is one of the representative semi-solid methods for aluminum. The most important factors in electromagnetic stirring would be the melt temperature, sleeve temperature, electromagnetic force, and input time. The effect of the temperature of molten alloy on the direct rheo-casting is assessed in this study. The temperature of the molten alloy is set to 590 ℃ with a solidification of 40%, 600 ℃ with 30%, and 610℃ with less than 20%. Under the condition of 590 ℃ with a solidification of 40%, the whole molten alloy is solidified, causing non-forming during forming process. Meanwhile, under the condition of 600 ℃, where the solidification was 30%, appropriate amount of molten alloy is solidified, filled well into the mold, resulting in good forming, while at 610 ℃ with the solidification of 20%, the molten alloy is not sufficiently solidified and scattered away. The investigation of the defects inside the product with the help of the X-ray equipment shows that the electromagnetic stirring at 590 ℃ with a solidification of 30% produces many air-pores inside the product.

Evaluation of Aluminum Part by Rheo Die Casting (레오다이캐스팅에 의한 알루미늄 부품의 평가)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.99-102
    • /
    • 2004
  • In rheo forming process, slurry making is very important factor because the microstructure of slurry affects the quality of final products. To control the microstructure of slurry, slurry making by new rheo die casting was studied. In new rheocasting method, processes parameters are degree of overheat in molten metal, cooling condition, high frequency induction heating condition and cup temperature. Microstructures according to these parameters were observed. By image analysis, equivalent diameter and roundness of grain were investigated and discussed. To find out mechanical properties of grain controlled aluminum part by rheo die casting, tensile tests were carried out to the T6 heat treatment.

  • PDF

A Study on Rheology Forming Process of Al-7%Si Alloy with Electromagnetic Application (전자교반을 응용한 Al-7%Si 알루미늄 소재의 레올로지 성형공정에 관한 연구)

  • Ko J.H.;Seo P.K.;Kang C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.195-205
    • /
    • 2006
  • This paper focuses on a rheo-forming of am part fabricated by electromagnetic stirring system (EMS). This forming process take place under high pressure of high pressure die casting and thin walled casting is possible. Furthermore, the productivity is better than low pressure die casting because of shorter cycle time. The advantages of rheo-forming are performed in the semi solid state with laminar flow and the gas content is low, which makes welding possible. Therefore this research applies for arm part with EMS and has investigated the mechanical properties after T6 and T5 heat-treatment.

Process Analysis for Rheo-Forming of Aluminum Materials (알루미늄재료의 Rheo-forming을 위한 성형공정해석)

  • Seo P. K.;Jung K. Y.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.124-128
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum ahoy has been studied Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The unposed mathematical model is applied to the die shape of the two type. To calculate the velocities and temperature fields during rheology forming process, the each governing equation correspondent to the liquid and solid region are adapted. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity.

  • PDF

Development of Arm Part by Indirect Press Process with Electromagnetic Stirring Application (간접가압방식에 의한 전자교반응용 암 부품 개발)

  • Ko J. H.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.340-343
    • /
    • 2005
  • This paper focuses on an rheo-forming of arm part fabricated by electromagnetic stirring system (EMS). This forming process take place under high pressure of high pressure die casting and thin walled casting is possible. Also the productivity is better than low pressure die casting because of shorter cycle time. The advantages of rheo-forming are performed in the semi solid state with laminar flow and the gas content is low, which makes welding possible. Therefore this research applies for arm part with EMS and has investigated the mechanical propriety after T6 and T5 heat-treatment.

  • PDF

Numerical and Experimental Study of Semi-solid A356 Aluminum Alloy in Rheo-Forging process

  • Kim, H.H.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D. Samples of metal parts were subsequently fabricated by using hydraulic press machinery.

  • PDF

Continuous Fabrication Process of Rheology Material by Rotational Barrel Equipment (회전식 바렐 장치에 의한 레올로지 소재의 연속 제조 공정)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.103-106
    • /
    • 2004
  • The new rheology fabrication process has been developed to rheo die casting and rheo forming process. Thixoforming process has disadvantages in terms of induction reheating process, scrap recycling, loss of raw material and cycle time. Therefore, to reduce the number of process, new rheology fabrication process with specially designed the rotational barrel type equipment has been proposed to apply in various part productions. The barrel type equipment, which could continuously fabricate the rheology materil, was specially designed to have a function to control cooling rate, shear rate and temperature. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed. The barrel surface has both the induction heating system and the cooling system to control the temperature of molten metal. By using this system, the effect of the rotation speed and the rotation time on the microstructure was widely examined. The possibility for the rheoforming process was investigated with microstructural characteristic.

  • PDF

A Study on the Cutting Characteristics of Al Alloy in End Milling for Various Hardnesses(I) (경도변화에 따른 Al합금의 밀링가공시 가공 특성에 관한 연구(I))

  • Kim Seong-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.82-87
    • /
    • 2006
  • The cutting tests of aluminum alloy with heat treatmented various hardnesses after rheo-fonning were carried out using CNC milling machine. The surface roughness(Ra, Rmax) of cut surface and cutting forces are measured at various cutting conditions such as low spindle speed, feed speed and hardness. In the CNC end-milling, the surface roughness increases as feed speed increases and decreases as spindle speed increases. However, the bulit-up edge has occurred on in case of low hardness and low feed speed. In experimental conditions, as the hardness of aluminum alloy increases, the surface roughness(Ra, Rmax) decreases

Indirect Forging Process with Aluminum Rheology Material by Electromagnetic Stirring System (전자교반을 응용한 알루미늄 레오로지 소재의 간접단조공정)

  • Oh, S.W.;Kang, S.S.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.135-138
    • /
    • 2007
  • A semi-solid forming processing has been developed for manufacturing near net-shape components. The semi-solid forming has two methods. One is thixo-forming with reheating prepared billet, the other is rheo- forming with cooled melt until semi-solid state. In indirect forging processing, this experiment used aluminum rheology materials by electromagnetic stirring system. Rheology material is made by A16061. An experiment has variation factors which are pressure, solid-fraction, stirring current and stirring time. Forged samples are found microstructures and mechanical properties. Forged samples are accomplished heat treatment T6 for high mechanical properties.

  • PDF