• Title/Summary/Keyword: Rg2

Search Result 871, Processing Time 0.037 seconds

Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy

  • Yun-Jeong Jeong;Mi-Hee Yu;Yuna Cho;Min-Young Jo;Kwon-Ho Song;Yung Hyun Choi;Taeg Kyu Kwon;Jong-Young Kwak;Young-Chae Chang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice

  • Huang, Wen-Chung;Huang, Tse-Hung;Yeh, Kuo-Wei;Chen, Ya-Ling;Shen, Szu-Chuan;Liou, Chian-Jiun
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.654-664
    • /
    • 2021
  • Background: Ginsenoside Rg3, isolated from Panax ginseng, has anti-inflammatory and anti-tumor activities. It is known to reduce inflammation in acute lung injury in mice, and to reduce the expression of inflammatory cytokines and COX-2 in human asthmatic airway epithelium. In this study, we attempted to determine whether ginsenoside Rg3 inhibits airway inflammation, oxidative stress, and airway hyperresponsiveness (AHR) in the lungs of asthmatic mice. We also investigated its effects on oxidative stress and the inflammatory response in tracheal epithelial cells. Methods: Asthma symptoms were induced in female BALB/c mice sensitized with ovalbumin (OVA). Mice were divided into five groups: normal controls, OVA-induced asthmatic controls, and asthmatic mice treated with ginsenoside Rg3 or prednisolone by intraperitoneal injection. Inflammatory BEAS-2B cells (human tracheal epithelial cells) treated with ginsenoside Rg3 to investigate its effects on inflammatory cytokines and oxidative responses. Results: Ginsenoside Rg3 treatment significantly reduced eosinophil infiltration, oxidative responses, airway inflammation, and AHR in the lungs of asthmatic mice. Ginsenoside Rg3 reduced Th2 cytokine and chemokine levels in bronchoalveolar lavage fluids and lung. Inflammatory BEAS-2B cells treated with ginsenoside Rg3 reduced the eotaxin and pro-inflammatory cytokine expressions, and monocyte adherence to BEAS-2B cells was significantly reduced as a result of decreased ICAM-1 expression. Furthermore, ginsenoside Rg3 reduced the expression of reactive oxygen species in inflammatory BEAS-2B cells. Conclusion: Ginsenoside Rg3 is a potential immunomodulator that can ameliorate pathological features of asthma by decreasing oxidative stress and inflammation

ab initio Calculations on Alkali Atom - Rare Gas Van Der Waals Clusters (알칼리 금속 - 비활성 기체 반데르발스 복합체에 대한 양자화학적 계산)

  • Lee, Bo Soon;Lee, Sung Yul
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.3
    • /
    • pp.190-193
    • /
    • 2000
  • ab initio calculations are presented for M-Rg and M-Rg2 (M=Li, Na, Rg=He, Ar) van der Waals clusters.InternucIear distances and binding energies of LiHe, LiAr and NaAr obtained by all-electron MP2(6-311++G(3df,3pd)) method are in good agreement with experimental values. Calculated properties of LiHe$_2$, LiAr$_2$, NaHe$_2$ and NaAr$_2$ are also reported.

  • PDF

Panax Ginseng Rg1 Enhances CD4+ T Cell Activities and Modulates Th1/Th2 Differentiation (인삼 Saponin Rg1이 분화된 보조 T cell의 cytokine 분비에 미치는 영향)

  • Kwon Hong Rho;Ko Eun Jung;Bae Hyun Su;Hong Moo Chang;Jung Seung Gi;Shin Min Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1021-1027
    • /
    • 2004
  • Panax ginseng has been used as a typical tonic medicine in Asian countries, such as Korea, China, and Japan. It has been reported that ginsenoside Rg1 in Panax ginseng increases the proportion of T helper cells in the whole T cells and promotes IL-2 gene expression in murine splenocytes. These studies imply that ginsenoside Rg1 increases the immune activity of CD4+ T cell, however the exact mechanism of ginsenoside Rg1 on helper T cell remains to be verified. The present study tried to elucidate the direct effect of Rg1 on helper T cell s activities and its Th1/Th2 lineage development. The results demonstrated that ginsenoside Rg1 had not mitogenic effects on the unstimulated CD4+ T cell, but augmented CD4+ T cell proliferation upon activating with anti-CD3/anti-CD28 antibodies in a dose dependent manner. Rg1 also enhanced the expression of cell surface protein CD69 on CD4+ T cell. In Th0 condition, ginsenoside Rg1 increases the expression of IL-2 mRNA, and enhances the expression of IL-4 mRNA on CD4+ T cells, suggesting Rg1 prefer to induce Th2 lineage development. In addition, ginsenoside Rg1 increases IL-4 secreting CD4+ T cell under Th2 skewed condition, while decreases IFN-γ secreting cell in Th1 polarizing condition. Thus, Rg1 enhances Th2 lineage development from naive CD4+ T cell both by increasing Th2 specific cytokine secretion and by repressing Th1 specific cytokine production. Therefore, these results suggest that ginsenoside Rg1 might be desirable agent for enhancing CD4+ T cell's activity, as well as the correction of Th1 dominant pathological disorders.

Analysis of Physicochemical Properties of Red Ginseng Powder Based on Particle Size (홍삼분말 입자크기에 따른 이화학적 특성 분석)

  • Choi, Hee Jeong;Lee, Sang Yoon;Lee, Jung Gyu;Park, Dong Hyeon;Bai, Jing Jing;Lee, Byung-Joo;Kim, Yoon-Sun;Cho, Youngjae;Choi, Mi-Jung
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.225-232
    • /
    • 2017
  • Most of the red ginseng (RG) products contain active substances derived from hot water or alcohol extraction. Since active substances of RG are divided into two types - water-soluble and liposoluble - water or alcohol is needed as an extraction solvent and this leads the different extraction yields and components of the active substances. To overcome the limit, whole red ginseng powder can be used and consumed by consumers. In this study, the physicochemical properties and extractable active substance contents of variable-sized RG powder ($158.00{\mu}m$, $8.45{\mu}m$, and $6.33{\mu}m$) were analyzed, and dispersion stability was measured to investigate the suitable size of RG powder for industrial processing. In the results, no significant difference was found from the changes in color intensity and thiobarbutric acid tests at $4^{\circ}C$, $25^{\circ}C$, and $40^{\circ}C$ for 4 weeks. There was no significant difference on the production of antioxidants and ginsenoside among the samples (p>0.05). In dispersion stability, $RG-158.00{\mu}m$ was precipitated immediately, and the dispersion stabilities between $RG-8.45{\mu}m$ and $RG-6.33{\mu}m$ showed no significant difference. It implies that fine RG is suitable for the production process. With further study, it seemed that the physicochemical effects of RG particle sizes can be clearly revealed.

Neuroprotective Effects of Ginsenoside Rg3 against 24-OH-cholesterol-induced Cytotoxicity in Cortical Neurons

  • Roh, Yoon-Seok;Kim, Hyoung-Bae;Kang, Chang-Won;Kim, Bum-Seok;Nah, Seung-Yeol;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.246-253
    • /
    • 2010
  • Ginsenoside $Rg_3$ ($Rg_3$), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents in vitro and antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. In the present study, we examined the neuroprotective effects of $Rg_3$ on 24-hydroxycholesterol (24-OH-chol)-induced cytotoxicity in vitro. The results showed that $Rg_3$ treatment significantly and dose-dependently inhibited 24-OH-chol-induced cell death in rat cultured cortical neurons, with an $IC_{50}$ value of $28.7{\pm}7.5\;{\mu}m$. Furthermore, the $Rg_3$ treatment not only significantly reduced DNA damage, but also dose-dependently attenuated 24-OH-chol-induced caspase-3 activity. To study the mechanisms underlying the in vitro neuroprotective effects of $Rg_3$ against 25-OH-chol-induced cytotoxicity, we also examined the effect of $Rg_3$ on intracellular $Ca^{2+}$ elevations in cultured neurons and found that $Rg_3$ treatment dose-dependently inhibited increases in intracellular $Ca^{2+}$, with an $IC_{50}$ value of $40.37{\pm}12.88\;{\mu}m$. Additionally, $Rg_3$ treatment dose-dependently inhibited apoptosis with an $IC_{50}$ of $47.3{\pm}14.2\;{\mu}m$. Finally, after confirming the protective effect of $Rg_3$ using a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, we found that $Rg_3$ is an active component in ginseng-mediated neuroprotection. These results collectively indicate that $Rg_3$-induced neuroprotection against 24-OH-chol in rat cortical neurons might be achieved via inhibition of a 24-OH-chol-mediated $Ca^{2+}$ channel. This is the first report to employ cortical neurons to study the neuroprotective effects of $Rg_3$ against 24-OH-chol. In conclusion, $Rg_3$ was effective for protecting cells against 24-OH-chol-induced cytotoxicity in rat cortical neurons. This protective ability makes $Rg_3$ a promising agent in pathologies implicating neurodegeneration such as apoptosis or neuronal cell death.

Stimulatory Effects of Ginsenoside-Rg1 on p56lck Kinase and Cell Proliferation in Jurkat T Cells (Jurkat T 세포에서 Ginsenoside-Rg1이 p561ck Kinase 활성과 세포증식에 미치는 영향)

  • Hong, Hee-Youn;Na, Do-Seong;Kwon, Tae-Ik;Choi, Jung-Kap;Yoo, Gyurng-Soo
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.117-121
    • /
    • 1995
  • We studied the effects of ginsenoside-$Rg_1$ (G-$Rg_1$) extracted from Panax ginseng C.A. Meyer on $p56^{kk}$ kinase and cell proliferation in Jurkat T cells. $p56^{kk}$ was maximally activated within 5 min after the treatment of 16.7 $\mu\textrm{g}$/ml of G-$Rg_1$ increasing the activity by 1.2-2 times relative to untreated control, thereafter its activity was gradually decreased to the level of untreated control. The action of EGTA on the kinase was altered by the addition of G-$Rg_1$, accompanying the band shift of $p56^{kk}$ to $p60^{kk}$. In addition, G-$Rg_1$promoted cell proliferation in a concentration-dependent manner. These results suggest that G-$Rg_1$ may be involved in T cell receptor-CD3 (TCR) signaling via the activation of $p56^{kk}$ and the chance of cellular calcium concentration.

  • PDF

Antimutagenic Mechanism of Water Extract from Rehmannia glutinosa Liboshitz on 4-nitroquinoline 1-oxide Induced Mutagenesis n E. coli B.r (대장균에서 4-nitroquinoline 1-oride의 변이원성에 대한 숙지황 물추출물의 항돌연변이 작용특성)

  • 안병용;한종현;최동성
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.486-492
    • /
    • 2001
  • The antimutagenic mechanism of the fraction III(RG III)separated from the water extract of Rehmannia glutionosa was investigated by Escherichia. coli GW and B/r strains. RG-III treatment did not affect the ${\beta}$-galactosidase activity E. coli GW-1060, 1106, 1107 and 1105. These results indicated that RG-III did not induce RecA protein amplification and did not also prevent the proteolytic cleavage of LexA. The bio-antimutagenicity and survival effect of RG-III on 4-nitroquinoline 1-oxide(4NQO), N-methyl-N-nitor-N\`-nitrosoguanidine(MNING) were investigate by E. coli B/r strains with have different pathway of DNA repai. RG-III slightly increased the survival of 4NQO-treated WP2, WP2s, WP67, CM561, CM611 cells, but the reactivation of survival cannot ve explained by the repair mode. RG-III caused the decrease of mutagenicity and lethality treated with MNNG in ZA159 despite of the increase in WP2, WP2s, WP67, CW561, CM611. Compared with bio-antimutagenic effects of RG-III on 4NQO, greatly increased antimutagenic effects of RG-III were observed with all the E. coli B/r strains tested, but less active in ZA159. These results suggest that RG-III was identified as a blocking agent for preventing the 4NQO induced mutagenesis, and may act as chl-products.

  • PDF

Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models

  • Chen, Ying-Jie;Wu, Jia-Ying;Deng, Yu-Yi;Wu, Ying;Wang, Xiao-Qi;Li, Amy Sze-man;Wong, Lut Yi;Fu, Xiu-Qiong;Yu, Zhi-Ling;Liang, Chun
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.418-425
    • /
    • 2022
  • Background: Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods: Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results: Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, overactivation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions: Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.

Metabolism of Ginsenoside Rg5, a Main Constituent Isolated from Red Ginseng, by Human Intestinal Microflora and Their Antiallergic Effect

  • Shin, Yong-Wook;Bae, Eun-Ah;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1791-1798
    • /
    • 2006
  • When ginsenoside Rg5, a main component isolated from red ginseng, was incubated with three human fecal microflora for 24 h, all specimens showed hydrolyzing activity: all specimens produced ginsenoside Rh3 as a main metabolite, but a minor metabolite $3{\beta},12{\beta}$-dihydroxydammar-21(22),24-diene (DD) was observed in two specimens. To evaluate the antiallergic effect of ginsenoside Rg5 and its metabolites, the inhibitory effect of ginsenoside Rg5 and its metabolite ginsenoside Rh3 against RBL-2H3 cell degranulation, mouse passive cutaneous anaphylaxis (PCA) reaction induced by the IgE-antigen complex, and mouse ear skin dermatitis induced by 12-O-tetradecanoilphorbol-13-acetate (TPA) were measured. Ginsenosides Rg5 and Rh3 potently inhibited degranulation of RBL-2H3 cells. These ginsenosides also inhibited mRNA expression of proinflammatory cytokines IL-6 and $TNF-{\alpha}$ in RBL-2H3 cells stimulated by IgE-antigen. Orally and intraperitoneally administered ginsenoside Rg3 and orally administered ginsenoside Rg5 to mice potently inhibited the PCA reaction induced by IgE-antigen complex. However, intraperitoneally administered ginsenoside Rg5 nearly did not inhibit the PCA reaction. These ginsenosides not only suppressed the swelling of mouse ears induced by TPA, but also inhibited mRNA expression of cyclooxygenase-2, $TNF-{\alpha}$, and IL-4 and activation of transcription factor NF-kB. These inhibitions of ginsenoside Rh3 were more potent than those of ginsenoside Rg5. These findings suggest that ginsenoside Rg5 may be metabolized in vivo to ginsenoside Rh3 by human intestinal microflora, and ginsenoside Rh3 may improve antiallergic diseases, such as rhinitis and dermatitis.