• Title/Summary/Keyword: Rg1

Search Result 956, Processing Time 0.033 seconds

Anti-cancer Activities of Ginseng Extract Fermented with Phellinus linteus

  • Lee, Jong-Jin;Kwon, Ho-Kyun;Jung, In-Ho;Cho, Yong-Baik;Kim, Kyu-Joong;Kim, Jong-Lae
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • In the present study, the anti-cancer effects of ginseng fermented with Phellinus linteus (GFPL) extract were examined through in vitro and in vivo assays. GFPL was produced by co-cultivating ginseng and Phellinus linteus together. Ginsenoside Rg3, Rh1 and Rh2 are important mediators of anti-angiogenesis and their levels in GFPL were enriched 24, 19 and 16 times, respectively, more than that of ginseng itself through the fermentation. GFPL exhibited distinct anti-cancer effects, including growth inhibition of the human lung carcinoma cell line A549, and promotion of immune activation by stimulating nitric oxide (NO) production in Raw 264.7 cells. Further evidence supporting anti-cancer effects of GFPL was its significant prolongment of the survival of B16F10 cancer cell-implanted mice. These results suggest that the GFPL may be a candidate for cancer prevention and treatment through immune activation and anti-angiogenic effects by enriching Rg3, Rh1 and Rh2.

Molecular Mapping of Resistant Genes to Brown Planthopper, Bphl and bph2, in Rice

  • Cha, Young-Soon;Cho, Yong-Gu;Shin, Kyeong-Og;Yeo, Un-Sang;Choi, Jae-Eul;Eun, Moo-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.345-349
    • /
    • 1999
  • This study was carried out to map Bphl and bph2 gene in Mudgo and Sangju13 (Oryza sativa L.) respectively conferring resistance to brown plan-thopper (BPH) and to establish the marker-assisted selection (MAS) system. Bulked seedling (grown for 20 days) test was conducted with the 73 F4 lines derived from a cross between Nagdongbyeo and Mudgo for Bphl and with 53 BC3F5 lines derived from the Milyang95/Sangju13 cross for bph2. Bph1 was mapped between RG413 and RG901 on chromo-some 12 at a distance of 7.5 cM from RG413 and 8.4 cM from RG90l. A recessive gene bph2 was located near RZ76 on chromosome 12 at a distance of 14.4 cM. Bphl and bph2 were linked to each other with a distance of about 30 cM. An RFLP marker, RG413 linked to Bphl, was converted to an STS marker to facilitate the marker-assisted selection. BPH resistant genotypes could be selected with 92% accuracy in a population derived from a line of NM47-B-B.

  • PDF

Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis

  • Li, Ling;Lee, Soo Jin;Yuan, Qiu Ping;Im, Wan Taek;Kim, Sun Chang;Han, Nam Soo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.412-418
    • /
    • 2018
  • Background: Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods: L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors ${\beta}$-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results: Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion: This study demonstrates that the lactic acid bacteria having specific ${\beta}$-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.

Physicochemical Components of Rehmannia glutinosa Fermented with Rhizopus delemar (Rhizopus delemar로 발효된 지황의 이화학적 성분 분석)

  • Song, Bitna;Lee, Dabin;Park, Boram;Hwang, Hae;Kim, So Young;Park, Shin Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.482-489
    • /
    • 2018
  • Background: This study was carried out to determine the physicochemical components of Rehmannia glutinosa (RG) fermented with Rhizopus delemar. Methods and Results: Physicochemical components such as changes in moisture content, pH value, total acidity, amount of reducing sugars as well as quantity of free sugars, free amino acids, and catalpol were investigated. Result showed that, the moisture content ranged from 64.26 to 65.51%. The pH and total acidity of the fermented RG decreased significantly during fermentation. The reducing sugar content ranged from 0.10 to 1.34%. The most abundant main free sugars were identified as raffinose, xylose, glucose, fructose, and sucrose. The sucrose content in 80% ethanol and in water extracts increased during RG fermentation. In total, 26 free amino acids were detected, including seven essential amino acids. In addition, the quantity of free amino acids decreased significantly during fermentation. Finally, the catalpol content of the fermented RG was highest on the $2^{nd}$ day of fermentation at 2,028.67 mg/ 100 g. Conclusions: These results indicated that fermentation of Rhizopus delemar could be used to enhance biological activity, and that fermented RG could be used as a functional material and as an edible resource in food and functional materials industries.

Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3

  • Maryam Nakhjavani;Eric Smith;Kenny Yeo;Yoko Tomita;Timothy J. Price;Andrea Yool;Amanda R. Townsend;Jennifer E. Hardingham
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.171-180
    • /
    • 2024
  • Background: Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods: Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results: HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion: The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.

Discrimination of Panax ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In order to distinguish the cultivation area of Panax ginseng, principal component analysis (PCA) using quantitative and qualitative data acquired from HPLC was carried out. A new HPLC method coupled with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous quantification of ten major ginsenosides, namely $Rh_1$, $Rg_2$, $Rg_3$, $Rg_1$, Rf, Re, Rd, $Rb_2$, Rc, and $Rb_1$ in the root of P. ginseng C. A. Meyer. Simultaneous separations of these ten ginsenosides were achieved on a carbohydrate analytical column. The mobile phase consisted of acetonitrile-water-isopropanol, and acetonitrile-water-isopropanol using a gradient elution. Distinct differences in qualitative and quantitative characteristics for ginsenosides were found between the ginseng roots produced in two different Korean cultivation areas, Ganghwa and Punggi. The ginsenoside profiles obtained via HPLC analysis were subjected to PCA. PCA score plots using two principal components (PCs) showed good separation for the ginseng roots cultivated in Ganghwa and Punggi. PC1 influenced the separation, capturing 43.6% of the variance, while PC2 affected differentiation, explaining 18.0% of the variance. The highest contribution components were ginsenoside $Rg_3$ for PC1 and ginsenoside Rf for PC2. Particularly, the PCA score plot for the small ginseng roots of six-year old, each of which was light than 147 g fresh weight, showed more distinct discrimination. PC1 influenced the separation between different sample sets, capturing 51.8% of the variance, while PC2 affected differentiation, also explaining 28.0% of the variance. The highest contribution component was ginsenoside Rf for PC1 and ginsenoside $Rg_2$ for PC2. In conclusion, the HPLC-ELSD method using a carbohydrate column allowed for the simultaneous quantification of ten major ginsenosides, and PCA analysis of the ginsenoside peaks shown on the HPLC chromatogram would be a very acceptable strategy for discrimination of the cultivation area of ginseng roots.

Stress-Reducing Effects of Brown Rice Koji

  • Lee, Geum-Seon;Choi, Ji-Young;Ko, Hong-Sook;Lee, Blendyl Saguan Tan;Yu, Gu-Young;Jeong, Chung-Won;Park, Hyung-Geun;Kim, Mi-Kang;Ryu, Jong-Hoon;Jung, In-Kyung;Cheong, Jae-Hoon
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • The primary objective of this study is to determine whether a diet supplemented with brown rice koji (BRK) results in a reduced stress response in rats and mice. BRK, which has been suggested as a candidate for use as a stress- and fatigue-fighting supplement, was compared with red ginseng extract (RG) for its stress-reducing potential. The animals in this study were divided into no-stress, stress, RG, and BRK groups of 8 to 10 animals each. Stress was induced by means of immobilization (being restrained in plastic tubes for 30 min and electroshock (0.5 mA in mice or 2 mA in rats for 5 min). The no-stress group was not exposed to stress. Rats in the RG group received oral doses of 200 mg RG extract/kg body weight daily. The BRK group was fed a 30% BRK diet and exposed to stress. Animals were given supplements for 7 days before being exposed to stress, and then were given supplements for 5 days with exposure to stress. When the stress exposure ended, the animals were observed for stress-related changes in behavior and their plasma corticosterone levels were measured. BRK supplementation was associated with a partial blockade of the effects of stress on locomotion and elevated plus-maze test results in rats and mice. It was also associated with a partial reduction in stress-induced behaviors such as freezing, burrowing, smelling, face-washing, and rearing. BRK supplementation did not have a significant effect on plasma corticosterone levels, which were increased in the animals exposed to stress (p<0.01). The mice in the RG group received RG in water (2 mg RG/ mL $H_2O$), and the BRK group received a 30% BRK diet (weight) for 7 days. Both groups were evaluated for signs of fatigue. BRK supplementation increased endurance, as indicated by time on the rota-rod, in cold water, and on the horizontal wire. These results suggest that BRK supplementation partially protects the animal from the effects of stress and may also contribute to resistance to fatigue on physical exertion.

Discrimination of geographical origins of raw ginseng using the electronic tongue (전자혀를 이용한 수삼의 원산지 판별)

  • Dong, Hyemin;Moon, Ji Young;Lee, Seong Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.349-354
    • /
    • 2017
  • The geographical origins of raw ginseng (RG) were discriminated using an electronic tongue. Taste screening, DFA (discriminant function analysis), and CDA (canonical discriminant analysis) were used to statistically analyze the data. The taste profile patterns of umami, bitterness, and sweetness of the Korean RG was different from those of the Chinese RG. The Korean RG was stronger than the Chinese RG regarding the taste of umami. DFA discriminated the geographical origins of 154 samples, with a few overlapping samples, between the Korean and Chinese RG. CDA showed that the accuracy of origin discrimination for the Korean and Chinese RGs were 87.01 and 94.81%, respectively. The final accuracy of origin discrimination was 90.91%. The distance between the centroids of each group was 2.7463. Thus, the electronic tongue analysis can be used to efficiently differentiate the geographical origins of RG.

Panax ginseng (Korea Red Ginseng) repairs diabetic sensorineural damage through promotion of the nerve growth factor pathway in diabetic zebrafish

  • Nam, Youn Hee;Moon, Hyo Won;Lee, Yeong Ro;Kim, Eun Young;Rodriguez, Isabel;Jeong, Seo Yule;Castaneda, Rodrigo;Park, Ji-Ho;Choung, Se-Young;Hong, Bin Na;Kang, Tong Ho
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.272-281
    • /
    • 2019
  • Background: Diabetic sensorineural damage is a complication of the sensory neural system, resulting from long-term hyperglycemia. Red ginseng (RG) has shown efficacy for treatment of various diseases, including diabetes mellitus; however, there is little research about its benefit for treating sensorineural damage. Therefore, we aim to evaluate RG efficacy in alloxan-induced diabetic neuromast (AIDN) zebrafish. Methods: In this study, we developed and validated an AIDN zebrafish model. To assess RG effectiveness, we observed morphological changes in live neuromast zebrafish. Also, zebrafish has been observed to have an ultrastructure of hair-cell cilia under scanning electron microscopy. Thus, we recorded these physiological traits to assess hair cell function. Finally, we confirmed that RG promoted neuromast recovery via nerve growth factor signaling pathway markers. Results: First, we established an AIDN zebrafish model. Using this model, we showed via live neuromast imaging that RG fostered recovery of sensorineural damage. Damaged hair cell cilia were recovered in AIDN zebrafish. Furthermore, RG rescued damaged hair cell function through cell membrane ion balance. Conclusion: Our data suggest that RG potentially facilitates recovery in AIDN zebrafish, and its mechanism seems to be promotion of the nerve growth factor pathway through increased expression of topomyosin receptor kinase A, transient receptor potential channel vanilloid subfamily type 1, and mitogen-activated protein kinase phosphorylation.

Changes in the ginsenoside content during the fermentation process using microbial strains

  • Lee, So Jin;Kim, Yunjeong;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.392-397
    • /
    • 2015
  • Background: Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. Methods: To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. Results: In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. Conclusion: As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process.