• Title/Summary/Keyword: Rf magnetic sputtering method

Search Result 42, Processing Time 0.031 seconds

Magnetic Properties and Microstructure of Co Thin Films by RF-diode Sputtering Method (RF-diode Sputtering법으로 제작한 Co박막의 자기특성과 미세구조)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.159-165
    • /
    • 2018
  • In order to increase the efficiency of the sputtering method widely used in thin film fabrication, a dc sputtering apparatus which supplies both high frequency and magnetic field from the outside was fabricated, and cobalt thin film was fabricated using this apparatus. The apparatus can independently control the applied voltage, the target-substrate distance, and the target current, which are important parameters in the sputtering method, so that a stable glow discharge is obtained even at a low gas pressure of $10^{-3}$ Torr. The fabrication conditions using the sputtering method were mainly performed in $Ar+O_2$ mixed gas containing about 0.6 % oxygen gas under various Ar gas pressures of 1 to 30 mTorr. The microstructure of Co thin films deposited using this apparatus was examined by electron diffraction pattern and X-ray techniques. The magnetic properties were investigated by measuring the magnetization curves. The microstructure and magnetic properties of Co thin films depend on the discharge gas pressure. The thin film fabricated at high gas pressure showed a columnar structure containing a large amount of the third phase in the boundary region and the thin film formed at low gas pressure showed little or no columnar structure. The coercivity in the plane was slightly larger than that in the latter case.

NbTi Thin Film by RF Sputtering Method (RF Sputtering법에 의한 NbTi박막 제조연구)

  • Kim, Bong-Seo;Woo, Byung-Chul;Ha, Dong-Woo;Byun, Woo-Bong;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.212-214
    • /
    • 1994
  • At recent time, superconducting technology makes it possible to develop various devices using strong magnetic fields. As increasing with devices using high magnetic fields, magnetic shielding technology is essential in order to get high efficiency. Therefore it is necessary to establish production method and clear characteristics of suitable shielding materials. Usually, ferromagnetic metal has been used for shielding of high magnetic fields up to the present time. Instead of heavy ferromagnetic metal, we can acquire better upgraded shielding system by using of very light superconducting thin film that has a perfect diamagnetism. We would like to study basic characteristics of NbTi thin film produced by RF sputtering, investigated morphology and crystal structure of NbTi thin film by SEM and XRD, identified superconductivity measuring by critical current.

  • PDF

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

Electro-Optical Characteristic for VA-LCD on the $SiO_x$ Thin Film Layer Oblique Deposited by Sputtering Method (스퍼터링으로 경사증착한 $SiO_x$ 박막을 이용한 VA-LCD의 전기광학특성)

  • Choi, Sung-Ho;Hwang, Jeoung-Yeon;Kim, Sung-Yeon;Oh, Byeong-Yun;Myoung, Jae-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.451-452
    • /
    • 2006
  • We studied the electro-optical characteristic of vertical alignment liquid crystal display(VA-LCD) on the $SiO_x$ thin film deposited $45^{\circ}$ oblique by rf magnetic sputtering system. LC alignment characteristic showed homeotropic alignment, and pretilt angle was about $90^{\circ}$. A uniform liquid crystal alignment effect on the $SiO_x$ thin film was achieved and the electro-optical characteristic of the $SiO_x$ thin film deposited $45^{\circ}$ oblique by rf magnetic sputtering system was excellent.

  • PDF

The Effect of Thicknesses on Magnetic Properties of Fe-Hf-N Soft Magnetic Thin Films (Fe-Hf-N 연자성 박막의 자기적 특성에 미치는 박막 두께의 영향)

  • Choi, Jong-Won;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.255-259
    • /
    • 2011
  • The thickness dependence of magnetic properties was experimentally investigated in nanocrystalline Fe-Hf-N thin films fabricated by a RF magnetron sputtering method. In order to investigate the thickness effect on their magnetic properties, the films are prepared with different thickness ranges from 90 nm to 330 nm. It was revealed that the coercivity of the thin film increased with film thickness. On the contrary, the saturation magnetization decreased with film thickness. On the basis of the SEM and TEM, an amorphous phase forms during initial growth stage and it changes to crystalline structure after heat treatment at $550^{\circ}C$. Nanocrystalline Fe-Hf-N particles are also generated.

Flux pinning properties of rf-sputtered YBCO films with $BaZrO_3$ doping (스퍼터링법에 의한 $BaZrO_3$도핑 YBCO 박막의 자속고정 특성 연구)

  • Chung, K.C.;Kim, Y.K.;Wang, X.L.;Dou, S.X.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.374-374
    • /
    • 2009
  • We have fabricated pure YBCO films and $BaZrO_3$ doped ones on $CeO_2$ buffered YSZ single crystal substrates using rf-sputtering method. In this work, pure YBCO and 2 vol% BZO doped YBCO target were used to investigate the flux pinning properties of BZO doped YBCO films compared to undoped ones. BZO nanodots within the superconducting materials was known to comprise the self-assembled columnar defects along the c-axis from the bottom of YBCO films up to the top surface, thus can be a very strong pinning sites in the applied magnetic field parallel to them. We will discuss the possibility of growing self-assembled columnar defects in the rf-sputtering method. It is speculated that BZO and YBCO phases can separate and BZO form nanodots surrounded by YBCO epitaxial layers and continuous phase separation and ordering between these two materials, which was well studied in Pulsed Laser Deposition method. For this purpose, some severe experimental conditions such as on-axis sputtering, shorter target-substrate distance, high rf-power, etc was adopted and their results will be presented.

  • PDF

Process effects on morphology, electrical and optical properties of a-InGaZnO thin films by Magnetic Field Shielded Sputtering

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.217-217
    • /
    • 2016
  • The amorphous InGaZnO (a-IGZO) is widely accepted as a promising channel material for thin-film transistor (TFT) applications owing to their outstanding electrical properties [1, 2]. However, a-IGZO TFTs have still suffered from their bias instability with illumination [1-4]. Up to now, many researchers have studied the sub-gap density of states (DOS) as the root cause of instability. It is well known that defect states can influence on the performances and stabilities of a-IGZO TFTs. The defects states should be closely related with the deposition condition, including sputtering power, and pressure. Nevertheless, it has not been reported how these defects are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOIs) can be generated by electron attachment in oxygen atom near target surface and then accelerated up to few hundreds eV by a self-bias; at this time, the high energy bombardment of NOIs induce defects in oxide thin films. Recently, we have reported that the properties of IGZO thin films are strongly related with effects of NOIs which are generated during the sputtering process [5]. From our previous results, the electrical characteristics and the chemical bonding states of a-IGZO thin films were depended with the bombardment energy of NOIs. And also, we suggest that the deep sub-gap states in a-IGZO as well as thin film properties would be influenced by the bombardment of high energetic NOIs during the sputtering process.In this study, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process to prevent the NOIs bombardment effects and present how much to be improved the properties of a-IGZO thin film by this new deposition method. We deposited a-IGZO thin films by MFSS on SiO2/p-Si and glass substrate at various process conditions, after which we investigated the morphology, optical and electrical properties of the a-IGZO thin films.

  • PDF

Homeotropic Alignment Effect for Nematic liquid Crystal on the Treated $SiO_x$ Thin Film Layer by Sputtering Method (스퍼터링법으로 경사증착한 $SiO_x$ 박막 표면의 액정 수직 배향 효과)

  • Choi, Sung-Ho;Kim, Byoung-Young;Kim, Young-Hwan;Kim, Jong-Hwan;Han, Jung-Min;Hwang, Jeoung-Yeon;Oh, Byeong-Yun;Myoung, Jae-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.66-67
    • /
    • 2006
  • We studied nematic liquid crystal (NLC) alignment effect on the $SiO_x$ thin film deposited $45^{\circ}$ oblique by rf magnetic sputtering system. Pretilt angle and thermal stability characteristic as well as NLC alignment effect were investigated. A uniform liquid crystal alignment effect on the $SiO_x$ thin film was achieved and pretilt angle was about $90^{\circ}$. The thermal stability of the $SiO_x$ thin film was sustained by $200^{\circ}$.

  • PDF

Effect of negative oxygen ion bombardment on the gate bias stability of InGaZnO

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.160-160
    • /
    • 2015
  • InGaZnO (IGZO) thin-film transistors (TFTs) are very promising due to their potential use in high performance display backplane [1]. However, the stability of IGZO TFTs under the various stresses has been issued for the practical IGZO applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of IGZO thin film. In this study, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of IGZO TFTs by this new deposition method.

  • PDF

Effect of Negative Oxygen Ions Accelerated by Self-bias on Amorphous InGaZnO Thin Film Transistors

  • Kim, Du-Hyeon;Yun, Su-Bok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.466-468
    • /
    • 2012
  • Amorphous InGaZnO (${\alpha}$-IGZO) thin-film transistors (TFTs) are are very promising due to their potential use in thin film electronics and display drivers [1]. However, the stability of AOS-TFTs under the various stresses has been issued for the practical AOSs applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the ${\alpha}$-IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of ${\alpha}$-IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of ${\alpha}$-IGZO thin film. In this paper, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in ${\alpha}$-IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of ${\alpha}$-IGZO TFTs by this new deposition method.

  • PDF