• 제목/요약/키워드: Reynolds-averaged Navier-Stokes equations

검색결과 326건 처리시간 0.027초

Supersonic flow bifurcation in twin intake models

  • Kuzmin, Alexander;Babarykin, Konstantin
    • Advances in aircraft and spacecraft science
    • /
    • 제5권4호
    • /
    • pp.445-458
    • /
    • 2018
  • Turbulent airflow in channels of rectangular cross section with symmetric centerbodies is studied numerically. Shock wave configurations formed in the channel and in front of the entrance are examined. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations are obtained with finite-volume solvers of second-order accuracy. The solutions demonstrate an expulsion/swallowing of the shocks with variations of the free-stream Mach number or angle of attack. Effects of the centerbody length and thickness on the shock wave stability and flow bifurcation are examined. Bands of the Mach number and angle of attack, in which there exist non-unique flow fields, are identified.

FW-H 방정식에서 적분표면의 크기가 유동소음 해석결과에 미치는 영향 (Size Effect of Integral Surface of FW-H Equations on Prediction of Aeroacoustic Noise)

  • 유승원;이종수;민옥기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.416-421
    • /
    • 2001
  • This paper presents the numerical prediction of sound generated by viscous flow past a circular cylinder. The two dimensional flow field is predicted using FEM based Reynolds-averaged Navier-Stokes solver, and the calculated unsteady fluid field values are utilized by an acoustic code that implements Ffowcs Willianms-Hawkings(FW-H) equation. The integration surface used in acoustic analysis is extended from the cylinder surface to permeable surfaces. The 2D based CFD calculations overpredict the acoustic amplitude, however, if adequate correlation length is used, the predicted acoustic amplitude agrees well with experiment. The predictions using extended integral surface in FW-H equation show results that contain the characteristics of quadrupole - volume integration - noise term, and do not vary seriously with the integral surface location.

  • PDF

초고압 가스차단기 내부의 압축성 유동장 해석 (Analysis of Compressible Flow Fields in a High Voltage Gas Circuit Breaker)

  • 이종철;오일성;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.305-310
    • /
    • 2001
  • This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker. There are many difficult problems in analyzing the gas flow in GCB due to complex geometry, moving boundary, shock wave and so on. In particular, the distortion problem of the grid due to the movement of moving parts can be worked out by the fixed grid technique. Numerical simulations are based on a fully implicit finite volume method of the compressible Reynolds-averaged Navier-Stokes equations to obtain the pressure, density, and velocity through the entire interruption process. The presented method is applied to the real circuit breaker model and the pressure in front of the piston is good agreement with the experimental one.

  • PDF

일체형 로켓-램제트 모드 천이 및 불안정 연소 유동장 해석 (Numerical Analysis on the Mode Transition of Integrated Rocket-Ramjet and Unstable Combusting Flow-Field)

  • 고현;박병훈;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.334-342
    • /
    • 2005
  • A numerical analysis is performed using two dimensional axisymmetric RANS (Reynolds Averaged Navier-Stokes) equations system on the transition sequence of the Integrated Rocket Ramjet and the unsteady reacting flow-field in a ramjet combustor during unstable combustion. The mode transition of an axisymmetric ramjet is numerically simulated starting from the initial condition of the boost end phase of the entire ramjet. The unsteady reacting flow-field within combustor is computed for varying injection area. In calculation results of the transition, the terminal normal shock is occurred at the downstream of diffuser throat section and no notable combustor pressure oscillation is observed after certain time of the inlet port cover open. For the case of a small injection area at the same equivalence ratio, periodic pressure oscillation in the combustor leads to the terminal shock expulsion from the inlet and hence the buzz instability occurred.

  • PDF

사류펌프 내 삼차원 유동의 수치해석 (NUMERICAL ANALYSIS OF THREE-DIMENSIONAL FLOW IN A MIXED-FLOW PUMP)

  • 안형진;김진혁;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.223-226
    • /
    • 2009
  • This paper presents three-dimensional flow analysis for a mixed-flow pump which consists of a rotor and a stator. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved by the commercial CFD code CFX 11.0. Structured grid system is constructed in the computational domain, which has O-type grids near the blade surfaces and H-type grids in other regions. Validation of the numerical results was performed with experimental data for head coefficients and hydraulic efficiencies at different flow coefficients. This paper shows that the pump characteristics can be predicted effectively by numerical analysis.

  • PDF

수치해석을 이용한 파력발전용 웰즈터빈의 유동특성에 관한 연구 (A Study on Flow Characteristics of a Wells Turbine for Wave Power Conversion Using Numerical Analysis)

  • 김정환;이형구;이연원;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.182-190
    • /
    • 2001
  • The aerodynamics of the Wells turbine has been studied using 3-d, unstructured mesh flow solver for the Reynolds-averaged Navier-Stokes equations. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define 3-D numerical grid is based upon that of an experimental test rig. The 3-D Wells turbine model, consisting of approximate 220,000 cells is tested of four axial flow rates. In the calculations the angle of attack has been varied between 10˚ and 30˚ of blades, Representative results from each case are presented graphically andy analysed. It is concluded that this technique holds much promise for future development of Wells turbines.

  • PDF

실린더형 기-액 원심분리기 내의 유동특성 연구를 위한 CFD 시뮬레이션 (CFD Simulation to Study Flow Characteristics in Cylindrical Gas-Liquid Cyclone Separator)

  • 박경도;박종천;김경미
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.280-287
    • /
    • 2014
  • In this paper, the numerical simulation of the gas-liquid flow in a cylinder cyclone separator is performed to investigate the flow characteristics using a commercial software, FLUENT, which solves the Reynolds-averaged Navier-Stokes(RaNS) equations. First, a single-phase flow with water in a gas-liquid cylinder cyclone(GLCC) separator is simulated and compared with the experiments(Farchi, 1990) and numerical simulations(Erdal, 1997). Then, the characteristics of the multi-phase flow for water-air, mud-only, and mud-air cases are discussed in the view point of the feasibilities for a mud handling system.

대구경 화포의 소음기에 대한 수치해석 (NUMERICAL ANALYSIS FOR A SILENCER OF TANK GUN)

  • 고성호;이동수;우성대;강국정
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.59-65
    • /
    • 2005
  • A numerical analysis was made to investigate the simple silencer for high pressure blast flow fields. Reynolds-Averaged Navier-Stokes equations were solved for an axisymmetric computational domain constructed by multi block grids. A blast flow field without the silencer was also calculated to validate the present numerical method. The effect of pressure diminution for the silencer was calculated by comparing with and without silencer at the atmosphere region. It was found that the tested silencer could achieve 89.4 percent pressure diminution.

2차원 및 축대칭 운동체 주위의 초공동 현상에 대한 수치해석 (NUMERICAL ANALYSIS OF SUPER-CAVITATING FLOW AROUND TWO-DIMENSIONAL AND AXISYMMETRIC BODIES)

  • 박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.14-21
    • /
    • 2011
  • Super-cavitating flows around under-water bodies are being studied for drag reduction and dramatic speed increase. In this paper, high speed super-cavitating flow around a two-dimensional symmetric wedge-shaped body were studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To verify the computational method, flow over a hemispherical head-form body was simulated and validated against existing experimental data. Various computational conditions, such as different wedge angles and caviation numbers, were considered for the super-cavitating flow around the wedge-shaped body. Super-cavity begins to form in the low pressure region and propagates along the wedge body. The computed cavity lengths and velocities on the cavity boundary with varying cavitation number were validated by comparing with analytic solution.

Vortical Flows over a Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1042-1051
    • /
    • 2004
  • The vortex flow characteristics of a sharp-edged delta wing at high angles of attack were studied using a computational technique. Three dimensional, compressible Reynolds-averaged Navier-Stokes equations were solved to understand the effects of the angle of yaw, angle of attack, and free stream velocity on the development and interaction of vortices and the relationship between suction pressure distributions and vortex flow characteristics. The present computations gave qualitatively reasonable predictions of vortical flows over a delta wing, compared with past wind tunnel measurements. With an increase in the angle of yaw, the symmetry of the pair of leading edge vortices was broken and the vortex strength was decreased on both windward and leeward sides. An increase in the free stream velocity resulted in stronger leading edge vortices with an outboard movement.