• Title/Summary/Keyword: Reynolds-averaged Navier-Stokes Equation

Search Result 161, Processing Time 0.022 seconds

Effect of Boundary Layer Swirl on Supersonic Jet Instabilities and Thrust

  • Han, Sang-Yeop
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.646-655
    • /
    • 2001
  • This paper reports the effects of nozzle exit boundary layer swirl on the instability modes of underexpanded supersonic jets emerging from plane rectangular nozzles. The effects of boundary layer swirl at the nozzle exit on thrust and mixing of supersonic rectangular jets are also considered. The previous study was performed with a 30°boundary layer swirl (S=0.41) in a plane rectangular nozzle exit. At this study, a 45°boundary layer swirl (S=1.0) is applied in a plane rectangular nozzle exit. A three-dimensional unsteady compressible Reynolds-Averaged Navier-Stokes code with Baldwin-Lomax and Chiens $\kappa$-$\xi$ two-equation turbulence models was used for numerical simulation. A shock adaptive grid system was applied to enhance shock resolution. The nozzle aspect ratio used in this study was 5.0, and the fully-expanded jet Mach number was 1.526. The \"flapping\" and \"pumping\" oscillations were observed in the jets small dimension at frequencies of about 3,900Hz and 7,800Hz, respectively. In the jets large dimension, \"spanwise\" oscillations at the same frequency as the small dimensions \"flapping\" oscillations were captured. As reported before with a 30°nozzle exit boundary layer swirl, the induction of 45°swirl to the nozzle exit boundary layer also strongly enhances jet mixing with the reduction of thrust by 10%.

  • PDF

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

Study on the Lateral Force Fluctuations in a Rocket Nozzle (로켓노즐에서 발생하는 횡력변동에 관한 연구)

  • Nagdewe, Suryakant;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.315-319
    • /
    • 2009
  • Investigation of the lateral force fluctuations in an axisymmetric overexpanded compressed truncated perfect (CTP) nozzle for the shutdown transient is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional unsteady numerical simulation has been carried out over an axisymmetric CTP nozzle to simulate the lateral force fluctuations in nozzle during shutdown process. Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. Two equation k-$\omega$ SST turbulence model is selected. Unsteady pressure is measured at four locations along the nozzle wall. Present pressure variation compared well with the experimental data. During shutdown transient, separation pattern varies from FSS to RSS and finally returns to FSS. Several pressure peaks are observed during the RSS separation pattern. These pressure peaks generate lateral force or side loads in rocket nozzle.

  • PDF

A Study on the De-Icing Performance Evaluation and Design Guide for Ice Class Louver of the Vessels Operating in Cold Region (빙해선박 아이스 클래스 루버의 해빙(de-icing) 성능평가 및 설계기준에 관한 연구)

  • Jung, Young-Jun;Seo, Young-Kyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.323-329
    • /
    • 2015
  • For the design guide of a vessel operating in cold region, numerical analysis was carried out to evaluate the ice class louver which installed the heating cables by using ANSYS 13.0 CFX. The numerical analysis was performed by considering Unsteady Reynolds Averaged Navier Stokes (RANS) equation. This study based on the experimental results of ‘The Cryogenic Performance Evaluation for the Excellent De-icing Ice Class Louver’ in KRISO. For validation of the numerical analysis results, the cold chamber experimental data measured by the heat sensors in certain location of the ice class louver was used. The external environmental temperature which varies from 0℃ to –30℃ was considered in numerical analysis. Also the design guide for optimum de-icing presented through heating cable power capacity(33 W/m, 45 W/m, 66 W/m), location of the heating cable(front, center, behind on the blade) and relative velocity(1 m/s, 4 m/s, 7 m/s).

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

Computations of the Supersonic Ejector Flows with the Second Throat (2차목을 가지는 초음속 이젝터 유동에 관한 수치계산)

  • Choi, Bo-Gyu;Lee, Young-Ki;Kim, Heuy-Dong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1128-1138
    • /
    • 2000
  • Pumping action in ejector systems is generally achieved through the mixing of a high-velocity and high-energy stream with a lower-velocity and lower-energy stream within a duct. The design and performance evaluation of the ejector systems has developed as a combination of scale-model experiments, empiricism and theoretical analyses applicable only to very simplified configurations, because of the generic complexity of the flow phenomena. In order to predict the detailed performance characteristics of such systems, the flow phenomena throughout the operating regimes of the ejector system should be fully understood. This paper presents the computational results for the two-dimensional supersonic ejector system with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the diffuser exit. For a wide range of the operating pressure ratio the flow field inside the ejector system is investigated in detail. The results show that the supersonic ejector systems have an optimal throat area for the operating pressure ratio to be minimized.

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

Unsteady Flow Analysis Around a HAWT System Using Sliding Mesh Technique (미끄럼 격자를 이용한 HAWT 시스템 주위의 비정상 유동장 해석)

  • Lee, Chi-Hoon;Kim, Sang-Gon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.201-209
    • /
    • 2011
  • An unsteady RANS analysis study of the 3-D flow around the NREL Phase VI horizontal axis wind turbine(HAWT) was performed using sliding mesh approach. Two different analysis models such as rotor-only and rotor with tower/nacelle were constructed to investigate the blade/tower interaction. Analysis results for the rotor with tower/nacelle were compared with the corresponding NREL's experimental data which produced fairly good validation of the present CFD model. Comparison of flows around those two models also clearly showed the blade/tower interaction even it was small for upwind configuration. Other visualization results and integrated aerodynamic loads including torque of the blade demonstrated the effective unsteady flow simulation capability of the present CFD model.

Fully Unstructured Mesh based Computation of Viscous Flow around Marine Propellers (비정렬격자를 이용한 프로펠러 성능 및 주위 유동해석)

  • Kim, Min-Geon;Ahn, Hyung Taek;Lee, Jin-Tae;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.162-170
    • /
    • 2014
  • A CFD(Computational Fluid Dynamics) analysis is presented to predict hydrodynamic characteristics of a marine propeller. A commercial RANS(Reynolds Averaged Navier-Stokes equation) solver, namely FLUENT, is utilized in conjunction with fully unstructured meshes around rotating propeller. Mesh generation process is greatly accelerated by using fully unstructured meshes composed of both isotropic and anisotropic tetrahedral elements. The anisotropic tetrahedral elements were used in the flow domain near the blade and shaft, where the viscous effect is important, having complex shape yet resolving the thin boundary layers. For other regions, isotropic tetrahedral elements are utilized. Two different approaches simulating rotational effect of the propeller are employed, namely Moving reference frame technique for steady simulation, and Sliding mesh technique for unsteady simulation. Both approaches are applied to the propeller open water (POW) test simulation. The current results, which are thrust and torque coefficients, are compared with available experimental data.

Effect of bow hull forms on the resistance performance in calm water and waves for 66k DWT bulk carrier

  • Lee, Cheol-Min;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.723-735
    • /
    • 2019
  • This paper employs computational tools to investigate the cause of resistance reductions in calm water and waves of the sharp bow form compared to the blunt bow in 66,000 DWT bulk carriers. A more slender shape at the fore-shoulder without a bulbous bow is a prominent feature of the sharp bow. The blunt bow incorporates a bulbous shape. A two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. The computational results have been validated with model tests carried out at a towing tank. The pressure component of resistance in the sharp bow is reduced by 8.9% in calm water, and 6.4-12.7% in regular head waves. The frictional components of resistance in the sharp and blunt bows are largely the same.