• Title/Summary/Keyword: Reynolds-Averaged Navier-Stokes Equation

Search Result 160, Processing Time 0.024 seconds

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING (Thermal Striping 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER (고압 이단 링블로워의 삼차원 유동해석 및 성능평가)

  • Lee, K.D.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.45-48
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the midplane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

  • PDF

NUMERICAL STUDY ON DPS THRUSTER-HULL INTERACTION WITH DIFFERENT AXIS TILTING ANGLE (축기울기에 따른 DPS 스러스터와 선체의 상호간섭 수치해석)

  • Jin, D.-H.;Lee, S.-W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.72-77
    • /
    • 2016
  • In this study, effects of thurster axis tilting angle on the thruster-hull interaction and propulsion performance in a dynamic positioning system of offshore plant are numerically investigated. Straight and 7-degree tilted downward thruster models as a form of ducted propeller are considered. For numerical simulations, Reynolds averaged Navier-Stokes equations with SST turbulence model are solved by using STAR-CCM+. Results show that thruster-hull interaction is reduced in 7-degree tilted thruster model with lower vortex strength between thruster and hull bottom, although the propulsion performance does not have noticeable difference in a bollard condition.

Computational Study of the Bleed-Pump Type Subsonic/Sonic Ejector Flows (추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구)

  • Kim, Heuy-Dong;Kwon, Oh-Sik;Koo, Byoung-Soo;Choi, Bo-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.485-490
    • /
    • 2000
  • This paper dipicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equation in a domain that extends form the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for subsonic/sonic ejector systems, the ejector throat area, the mixing section configuration, and the ejector throat length were changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratio, the effects of the design factors on the flow are discussed.

  • PDF

NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER (Arcjet Thruster 유동의 전산해석)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF

A Numerical Study on the Performance of a Two-Stage Ejector-Diffuser System

  • Kong, Fanshi;Kim, Heuy Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 2015
  • The conventional ejector-diffuser system makes use of high pressure primary stream to propel the secondary stream through pure shear action for the purposes of transport or compression of fluid. It has been widely used in many industrial applications such as seawater desalination, solar refrigeration, marine engineering, etc. The present study is performed numerically to study the performance of a two-stage ejector-diffuser system. The detailed flow phenomenon of the ejector-diffuser system has been critically predicted by means of the numerical approach using compressible Reynolds averaged Navier-Stokes (RANS) equations. The axi-symmetric supersonic ejector-diffuser flow has been solved by a fully implicit finite volume scheme with a two-equation k-omega turbulence model. The numerical results are validated with existing experimental data. Detailed flow physics and their contributions on ejector performance are detected to compare both single-stage and two-stage ejectors. The performance improvement on the ejector-diffuser system is discussed in terms of the mass flux ratio and the coefficient of power.

CFD Application for Prediction of Ship Added Resistance in Waves

  • Kim, Byung-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.135-145
    • /
    • 2018
  • This paper deals with the added resistance of a ship in waves using computational fluid dynamics (CFD). The ship added resistance is one of the key considerations in the design of energy-efficient ship. In this study, the added resistance of a LNG carrier in head waves is computed using a CFD code to consider the nonlinearity and the viscous effects. The unsteady Reynolds Averaged Navier-Stokes equation (RANS) is numerically solved and the volume of fluid (VOF) approach is used to simulate the free surface flows. The length of incident wave varies from half the ship length to twice the ship length. To investigate the nonlinearity effect, both the linear wave condition and the nonlinear wave condition are considered. The heave and pitch motions are calculated along with the added resistance, and the wave contours are obtained. Grid convergence test is conducted thoroughly to achieve the converged motion and resistance values. The calculated results are compared and validated with experimental data.

Evaluation of Turbulence Models for Analysis of Thermal Striping (Thermal Striping 해석 난류모델 평가)

  • Choi Seok-Ki;Nam Ho-Yun;Wi Myung-Hwan;Eoh Jae-Hyuk;Kim Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.142-147
    • /
    • 2005
  • A numerical study of evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple jet flow with the same velocity but different temperature. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLE algorithm. The results of the present study show that the temporal oscillation of temperature is predicted only by the V2-f model, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. The the two-layer model and the SST model shows nearly the same capability of predicting the thermal striping and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

  • PDF

NUMERICAL SIMULATION ON A VOLUTE OF STRAIGHT CONICAL DUCT TYPE BY MULTI-BLOCK GRID (다중 블록 격자를 이용한 원뿔 직관 모양의 벌류트 유동의 수치해석)

  • Bae, H.;Kang, H.G.;Yoon, J.S.;Park, K.C.;Chang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.1-7
    • /
    • 2006
  • Numerical investigation of a centrifugal compressor volute having a modified straight conical duct hill been made. Three-dimensional Reynolds-Averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence equation are solved To avoid coordinate singularity at the central axis of the duct, multi-block H-type grid is generated on the circular cross-sections of the volute and stretched toward the solid wall boundary. We obtained numerical results with three different mass flow rates at the volute inlet, namely, with the inlet conditions that give small, medium and large mass flow rates at the outlet of the conical duct. Agreement with the experimental results is observed.

Computational Validation of Supersonic Combustion Phenomena associated with Hypersonic Propulsion (극초음속 추진과 관련된 초음속 연소 현상의 수치적 검증)

  • Choi Jeong-Yeol;Jeung In-Seuck;Yoon Youngbin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.117-122
    • /
    • 1998
  • A numerical study is carried out to investigate the transient process of combustion phenomena associated with hypersonic propulsion devices. Reynolds averaged Navier-Stokes equations for reactive flows are used as governing equations with a detailed chemistry mechanism of hydrogen-air mixture and two-equation SST turbulence modeling. The governing equations are discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit time accurate method. At first, oscillating shock-induced combustion is analyzed and the comparison with experimental result gives the validity of present computational modeling. Secondly, the model ram accelerator experiment was simulated and the results show the detailed transient combustion mechanisms. Thirdly, the evolution of oblique detonation wave is simulated and the result shows transient and final steady state behavior at off-stability condition. Finally, shock wave/boundary layer interaction in combustible mixture is studied and the criterion of boundary layer flame and oblique detonation wave is identified.

  • PDF