• Title/Summary/Keyword: Reynolds number and test channel

Search Result 35, Processing Time 0.023 seconds

Effects of Roughness Arrangement on Heat Transfer in the Reciprocating Channel (왕복운동을 하는 사각채널에서 거칠기 배열이 열전달에 미치는 효과)

  • 안수환;손강필;진용수;김성태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.502-509
    • /
    • 2003
  • This paper describes a detailed experimental investigation of heat transfer in a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively in the ranges, 1,000~6,000, 1.7~2.5 Hz, and 7~15 cm with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (b), Case (c), Case (d), and Case (a).

The Effects of Surface Roughness on Heat Transfer in The Reciprocating Channel (왕복운동을하는 채널에서 표면거칠기가 열전달에 미치는 영향)

  • Ahn Soo Whan;Son Kang Pil
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.333-336
    • /
    • 2002
  • This paper describes a detailed experimental Investigation of heat transfer In a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively, in the ranges, $1,000\;{\~}\;6,000,\;1.7\;{\~}\;2.5\;Hz,\;and\;7\;{\~}\;15cm$ with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (a), Case (d), Case (c), and Case (b)

  • PDF

An Experimental Study on Characteristics of Hydrodynamic Forces Acting on Unmanned Undersea Vehicle at Large Attack Angles (대각도 받음각을 갖는 무인잠수정에 작용하는 동유체력 특성에 관한 실험적 연구)

  • Bae, Jun-Young;Kim, Jeong-Jung;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • The authors adopt the Unmanned Undersea Vehicle(UUV), the shape of which is like a manta. They call here it Manta UUV. Manta UUV has been designed from the similar concept of the UUV called Manta Test Vehicle(MTV), which was originally built by the Naval Undersea Warfare Center of USA(Lisiewicz and French, 2000; Simalis et al., 2001; U.S. Navy, 2004). The present study deals with the effect of Reynolds numbers on hydrodynamic forces acting on Manta UUV at large angles of attack. The large angles of attack cover the whole range of 0 to ${\pm}$ 180 degrees in horizontal plane and in vertical plane respectively. Static test at large attack angles has been carried out with two Manta UUV models in circulating water channel. The authors assume that the experimental results of hydrodynamic forces (lateral force, yaw moment, vertical force and pitch moment) are analyzed into two components, which are lift force component and cross-flow drag component. First of all, Based on two dimensional cross-flow drag coefficient at 90 degrees of attack angle, the cross-flow drag component at whole range of attack angles is calculated. Then the remainder is assumed to be the lift force component. The only cross-flow drag component is assumed to be subject to Reynolds number.entstly the authors suggest the methodology to predict hydrodynamic derivertives acting on the full-scale Manta UUV.

Thermal Characteristics of Discrete Heat Sources Using Coolants

  • Choi, Min-Goo;Cho, Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • The present study investigated the effects of experimental parameters on the thermal characteristics of an in-line 6x1 array of discrete heat sources for a test multichip module using water, PF-5060 and paraffin slurry. The parameters were heat flux of 10-40W/$cm^2$. Reynolds number of 3,000~20,000 and mass fraction up to 10% for paraffin slurry The size of paraffin slurry was within 10~40$\mu$m before and after experiments. The local heat transfer coefficients for the paraffin slurry were larger than those for water. Thermally fully developed conditions were observed after the third or fourth row (five or seven times of the chip length) and the paraffin slurry showed effective cooling performance at the high heat flux The paraffin slurry with the mass fraction of 5% showed the most efficient cooling performance when the heat transfer and the pressure drop in the test section are considered simultaneously. The experimental data at the fourth and sixth rows are best agreed with the values predicted by the Malina and Sparrow`s correlation among other correlations, and the empirical correlations for water and 5% paraffin slurry were obtained at the first and sixth rows when the channel Reynolds number is over 3,000.

  • PDF

An Experimental Study of Developing and Fully Developed Flows in a Wavy Channel by PIV

  • Kim, Sung-Kyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1853-1859
    • /
    • 2001
  • An experimental study is presented for a flow field in a two dimensional wavy channels by PIV. This flow has two major applications such as a blood flow simulation and the enhancement of heat transfer in a heat exchanger. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and developing flow regimes by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. PIV results on the Fully developed and developing flow in a wavy channel at Re=500, 1000 and 2000 are obtained. for the case Reynolds Number equals 500, the PIV results are compared with the finite difference numerical solution.

  • PDF

The Effect of Reciprocating Motion on Heat Transfer in the Roughened Rectangular Channel (거친사각채널에서 왕복운동이 열전달에 미치는 효과)

  • 안수환;손강필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.646-652
    • /
    • 2002
  • The influence of reciprocating frequency and radius on heat transfer in the roughened rectangular channel is experimentally investigated. The aspect ratio (width/height) of the duct is 2.33 and the rib height is one fifteenth of the duct height. And the ratio of rib-to-rib distance to rib height is 10. The discrete ribs were periodically attached to the button wall of the duct with a parallel orientation. The parametric test matrix involves Reynolds number, reciprocating, and reciprocating radius, in the ranges, 1,000∼6,000, 1.7∼2.5 HB and 7∼15cm, respectively. The combined effects of reciprocating frequency and reciprocating radius have considerable influence on the heat transfer due to the modified vortex flow structure.

The Review of Studies on Pressure Drop and Heat Transfer In Microchannels

  • Hwang, Yun-Wook;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2005
  • This paper reviews the studies on the pressure drop and the heat transfer in microchannels. Although a lot of studies about the single-phase flow have been done until now, conflicting results are occasionally reported about flow transition from laminar flow to turbulent flow, friction factor, and Nusselt number. Some studies reported the early flow transition due to relatively greater wall effect like surface roughness, but the other studies showed that the flow transition occurred at the Reynolds number of about 2300 and the early flow transition might be due to less accurate measurement of the channel geometry. Also, there have been arguments whether the conventional relation based upon continuum theory can be applied to the fluid flow and the heat transfer in microchannels without modification or not. The studies about the two-phase flow in microchannels have been mostly about investigating the flow pattern and the pressure drop in rectangular channels using two-component, two-phase flow like air/water mixture. Some studies proposed correlations to predict two-phase flow pressure drop in microchannels. They were mostly based on Lockhart-Martinelli model with modification on C-coefficient, which was dependent on channel geometry, Reynolds number, surface tension, and so on. Others investigated the characteristics of flow boiling heat transfer in microchannels with respect to test parameters such as mass flux, heat flux, system pressure, and so on. The existing studies have not been fully satisfactory in providing consistent results about the pressure drop and the heat transfer in microchannels. Therefore, more in-depth studies should be done for understanding the fundamentals of the transport phenomena in the microchannels and giving the basic guidelines to design the micro devices.

Experimental Study on the Aerodynamic Characteristics of a High-speed Ground Vehicle Moving in a Channel (채널 내를 운행하는 초고속 지상 운행체의 공력특성에 관한 실험적 연구)

  • Choi, Dong-Soo;Kim, Dong-Hwa;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.72-81
    • /
    • 2004
  • A Wind tunnel test for a high speed ground vehicle was conducted to investigate the aerodynamic interactions between the vehicle and a solid channel. The free stream velocity was 30m/see and Reynolds number per unit length was $3.1{\times}10^5/m$. Experimental devices such as a variable channel ground and guide way were used for the test. As the vehicle was close to the channel ground and guide way, lift was significantly increased, drag was slightly decreased and pitching moments were restricted to augment static stability. Using smoke-wire, flow visualization was made to confirm these results by comparing the channel and non-channel flow characteristics of the vehicle. Under the influence of the channel ground and guide way, the flow beneath the vehicle was not discharged outside wing end plates, which was the major reason of the increase in lift of the vehicle.

Hydraulic Model Test on Local Scour Protecting around Bridge Piers with TTG Blocks (TTG블록의 교각국부세굴에 대한 수리모형 성능평가)

  • Park, Hyun-Joo;Ji, Jhung-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.165-174
    • /
    • 2010
  • TTG-blocks are concrete blocks designed to be paved around the bridge piers in order to protect the channel bed from local scour. In this study roughness coefficient of T.T.G- blocks are investigated through the hydraulic model test. And critical safety weight of TTG-blocks is derived in terms of Reynolds number for each individual block and group of linked blocks. Flume experiments show that a performance of TTG-blocks is effective to protect the river channel bed from local scour at bridge piers if it is assessed using with geotextile mat under blocks or designated gravels for filling in holes of blocks.

Effects of Tape on Heat Transfer and Friction Factor in a Square Channel (사각 채널에 설치된 테이프가 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo-Whan;Kang, Ho-Keun;Bae, Sung-Taek;Putra, Ary Bachtiar Krishna
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2402-2407
    • /
    • 2007
  • Heat transfer distributions and friction factors in square channels (3.5 ${\times}$ 3.5 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are respectively investigated. Tests are performed for Reynolds numbers ranging from 8,900 to 29,000. The rib height-to-channel hydraulic diameter, e/Dh, is kept at 0.057 and test section length-to-hydraulic diameter, L/Dh is 30. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 3.3cm, length of 90cm, and 2.5 turns. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. Each wall of the square channel is composed of isolated aluminum sections. The following conclusions from the experimental study were drawn as: 1) In the 4 heating wall channel with twisted tape inserts, Nusselt number based on bottom wall temperature is enhanced by 1.2 - 1.6 times if adding the axial interrupted ribs on the bottom wall only. 2) The twisted tape with interrupted ribs under the two-sided heating condition produces the highest heat transfer performance. 3) Friction factor data obtained for the square channel with twisted tape inserts plus axial interrupted ribs are less than those in the past publications for circular tubes with axial interrupted ribs and twisted tape inserts.

  • PDF