• Title/Summary/Keyword: Reynolds equation

Search Result 661, Processing Time 0.019 seconds

A Numerical Model for Cohesive Suspended Load Movement (점착성 부유사 이동에 관한 수치모형)

  • 안수한;이상화
    • Water for future
    • /
    • v.23 no.1
    • /
    • pp.119-127
    • /
    • 1990
  • The concentration of cohesive suspended sediment is determined by the circulation of water and the material dispersion. The equations of the two-dimensional, depth-integrated dispersive transport are the Reynolds equation, continuity equation, and advection-dispersion equation based on the Fick's law. A finite difference method has been applied to two models of circulation and dispersion transport. The circulation model is solved by the explicit scheme and the dispersion transport model is solved by multi-operational scheme. It is investigated wheter advective terms are included when the equation of circulation is applied to the model. For advection-dispersion equation, it was also investigated about variations of suspended sediment concentration with respect to the critical shear stresses.

  • PDF

Multiple Source Modeling of Low-Reynolds-Number Dissipation Rate Equation with Aids of DNS Data

  • Park, Young-Don;Shin, Jong-Keun;Chun, Kun-Go
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.392-402
    • /
    • 2001
  • The paper reports a multiple source modeling of low-Reynolds-number dissipation rate equation with aids of DNS data. The key features of the model are to satisfy the wall limiting conditions of the individual source terms in the exact dissipation rate equation using the wall damping functions. The wall damping functions are formulated in term of dimensionless dissipation length scale ι(sup)+(sub)D(≡ι(sub)D($\upsilon$$\xi$)(sup)1/4/$\upsilon$) and the invariants of small and large scale turbulence anisotropy tensors. $\alpha$(sub)ij(=$\mu$(sub)i$\mu$(sub)j/$\kappa$-2$\delta$(sub)ij/3) and e(sub)ij(=$\xi$(sub)ij/$\xi$-2$\delta$(sub)ij/3). The model constants are optimized with aids of DNS data in a plane channel flow. Adopting the dissipation length scale as a parameter of damping function, the applicabilities of $\kappa$-$\xi$ model are extended to the turbulent flow calculation of complex flow passages.

  • PDF

Analysis of Hydrodynamic Lateral Forces Acting on Grooved Pistons in Hydraulic Piston Pumps (그루브를 한 유압 피스토펌프의 피스톤에 작용하는 측력의 해석)

  • 박태조;이정오
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.44-49
    • /
    • 1992
  • Hydrodynamic lateral forces acting on circumferentially grooved and tapered pistons in hydraulic piston pumps are analyzed for the case where the axis of piston and cylinder are tilted with each other. The effects of grooves and tilting on lateral force and leakage flowrate are discussed from the analytical solution of one-dimensional Reynolds equation. The analytical solution is in accordance with the numerical solution of two-dimensional Reynolds equation as the number of grooves increases.

A Study on the Development of Low Reynolds Number Second Moment Turbulence Model (저레이놀즈수 2차 모멘트 난류모형 개발에 관한 연구)

  • 김명호;최영돈;신종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1596-1608
    • /
    • 1993
  • Low Reynolds number second moment turbulence model which be applicable to the fine gird near the wall region was developed. In this model, turbulence model coefficients in the pressure strain model of the Reynolds stress equation was expressed as functions of turbulence Reynolds number $R_{t}\equivk^{2}/(\nu\varepsilon)).$ In the derivation procedure of the present low Reynolds number algebraic stress model, Laufer's near wall experimental data on Reynolds stresses were curve fitted as functions of R$_{t}$ and the resulting simultaneous equations of the model coefficients were solved by using the boundary conditions at wall and high Reynolds number limiting conditions. Predicted Reynolds stresses and dissipation rate of turbulent kinetic energy etc. in the 2 dimensional parallel, plane channel flow and pipe flow were compared with the preditions obtained by employing the Launder-Shima model, standard algebraic stress model and several experimental data. Results show that all the Reynolds stresses and dissipation rate of turbulent kinetic energy predicted by the present low Reynolds number algebraic stress model agree better with the experimental data than those predicted by other algebraic stress models.

Effect of Sliding Velocity on 3D Rough Surface in Mixed Lubrication Regime (속도의 영향에 따른 3차원 거친 표면의 혼합윤활해석)

  • Lim, DongJin;Moon, Sukman;Cho, Yongjoo
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • This study examined the effects of surface roughness in the mixed lubrication regime of smooth and rough surfaces for roller bearings. The average flow model was adopted for interaction between the flow rheology of the lubricant and the surface roughness. The average Reynolds equation and related flow factor that describes the coupled effects of surface roughness and flow rheology, the viscosity-pressure and density-pressure equations, the elastic deformation equation, and the force balance equation were solved simultaneously. The results showed that the effects of surface roughness on the film thickness and pressure distribution should be considered, especially in elastohydrodynamic lubrication contact problems.

Simulation of Elastohydrodynamic Phenomena of Thin Foil in Magnetic Recording Device (자기기록장치에서의 박막탄성체의 탄성유체윤활현상에 관한 수치해석)

  • 권해성;민옥기;김수경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1355-1364
    • /
    • 1994
  • This paper analyzes the running mechanism of flexible and thin foil above rotating protrusion through a numerical simulation. The scope of analysis is confined to the phenomena of elastohy-drodynamic lubrication between the stationary and rotary drums with a running protrusion and thin foil. This mathematical model is based on the modified Reynolds equation and the equation of plate, considering the geometry of protrusion, running direction of protrusion, and the effect of geometric nonlinearity. Finite element method is adopted as a numerical simulation technique to solve the avobe coupled nonlinear equations. In numerical analysis, the effects of the scanning angle in Reynolds equation and the nonlinear term in plate equation are evaluated. Furthermore, the simulation is applied to the situation that thin foil is located in the entire drums (stationary and rotary drums).

Damping Characteristics of a Microcantilever for Radio Frequency-microelectromechanical Switches (RF-MEMS 스위치용 마이크로 외팔보의 감쇠특성)

  • Lee, Jin-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.553-561
    • /
    • 2011
  • A theoretical approach is carried out to predict the quality factors of flexible modes of a microcantilever on a squeeze-film. The frequency response function of an inertially-excited microcantilever beam is derived using an Euler-Bernoulli beam theory. The external force due to squeeze-film phenomenon is developed from the Reynolds equation. Slip boundary conditions are employed at the interfaces between the fluid and the structure to consider the gas rarefaction effect, and pressure boundary condition at both ends of fluid analysis region is enhanced to increase the exactness of predicted quality factors. To the end, an approximate equation is derived for the first bending mode of the microcantilever. Using the approximate equation, the quality factors of the second and third bending modes are calculated and compared with experimental results of previously reported work. The comparison shows the feasibility of the current approach.

A Numerical Dynamic Simulation of the Slider in HDD (하드디스크 슬라이더의 동적수치해석)

  • 김도완;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.146-153
    • /
    • 1999
  • A numerical dynamic simulation is necessary to investigate the capacity of the HDD. The slider surface become more and more complicated to make the magnetized area smaller and readback signal stronger. So a numerical dynamic simulation must be preceded to develop a new slider in HDD. The dynamic simulations of air-lubricated slider bearing have been peformed using FIFD(Factored Implicit Finite Difference) method. The governing equation, Reynolds equation Is modified with Fukui and Kaneko model(FK model) which includes the first and the second-order slip. The equations of motion for the slider bearing are solved simultaneously with the modified Reynolds equation for the case of three degrees of freedom. The slider transient response for disk step bump and slider impulse force is given for various case and for iteration algorithm and new algorithm.

  • PDF

A study on the Static and Dynamic Characteristics of Tilting Pad Thrust Bearing by Approximate Elasto-Thermohydrodynamic Lubrication Analysis (근사 탄성열유체윤활해석에 의한 틸팅 패드 트러스트 베어링의 정특성 및 동특성에 관한 연구)

  • Hwang, Pyung;Lee, Kwang-Hee
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.35-45
    • /
    • 1994
  • The thermohydrodynamic analysis of tilting pad thrust bearing is studied with the consideration of elastic effect of pad. Reynolds equation, deflection equation and energy equation are solved simultaneously with the boundary conditions. Reynolds equation is modified as the approximate form. Pads are supported by the line pivot and the point pivot respectively. Pads are considered as the flat planes. Effects of pad thickness on the performance of thrust bearing are emphasized and the performances of rigid pad and elastic pad are compared. Effects of inlet temperature on performances of the bearing are compared. Dynamic characteristics of both pad supported by line and point pivot are compared.

An Experimental Study for Local Scour of the Riverbed at Pier (교각주변(橋脚周邊) 하상(河床)의 국부세굴(局部洗掘)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Won Hwan;Lee, Jung Sik;Lee, Hong Rae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 1985
  • This study is an experimental analysis for local scour of the riverbed at pier. The basic equation with dimensionless elements(Pier Reynolds Number, Dimensionless Turbulence Intensity) is derived through dimensional analysis. After testing the goodness of fit of data, the coefficients are determined by multiple regression analysis. In the region where the value of the attack angle is near 20 degrees, there exists a transition region where the slope of equation with Pier Reynolds Number changes from positive to negative and that of equation with Dimensionless Turbulence Intensity changes from negative to positive adversely. As a result of testing the equation suggested on this study by using the data of the Institute of National Construction, it is found that the scour depth and width at pier can be predicted approximately.

  • PDF