• 제목/요약/키워드: Reynolds Stresses

검색결과 152건 처리시간 0.02초

난류운동에너지-길이 Scale을 사용하는 단순화된 Reynolds 응력모형 (A Simplified Reynolds Stress Model with Turbulent Kinetic Energy-Length Scale)

  • 허재영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.404-408
    • /
    • 2005
  • The Reynolds strss equation with turbulent energy-length scales was simplified in the nearly homogeneous turbulent equilibrium flow and a modified Reynolds stress model was proposed. Tn the model proposed in the present study, Reynolds stresses can be expressed in the form of algebraic equation, so that the turbulent stresses and related quantities are calculated through relatively simple procedures. The model predicted well the turbulent shear stresses of homogeneous flow in local equilibrium state obtained from experimental results published earlier Constants used In the model was determined universally and its validity was discussed briefly.

  • PDF

난류 파이프 유동에서의 레이놀즈 수 영향: Part II. 순간유동장, 고차 난류통계치 및 난류수지 (REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART II. INSTANTANEOUS FLOW FIELD,HIGHER-ORDER STATISTICS AND TURBULENT BUDGETS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.100-109
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the higher-order statistics(Skewness and Flatness factor). Furthermore, the budgets of the Reynolds stresses and turbulent kinetic energy were computed and analyzed to elucidate the effect of Reynolds number on the turbulent structures.

두 곡면벽제트로부터 형성된 합성제트에서의 레이놀즈응력 전달 (Reynolds Stress Transport in a Merged Jet Arising from Two Opposing urved Wall Jets)

  • 류호선;박승오
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.416-425
    • /
    • 1993
  • To investigate the characteristics of the merged jet arising from the interaction of two opposing curved wall jets over a circular cylinder in still air, mean velocity, Reynolds stresses, triple moments and integral length scale were measured using hot-wire anenometry. The turbulent kinetic energy and shear stress budget were evaluated using the measured data. The variations of the Reynolds stresses, the triple moment and integral length scale are severe in the interaction region. The pressure diffusion terms are found to be very large when compared the other terms in the interaction region. The distributions of the Reynolds stress and the triple moment in the similar region are found to be similar to those of conventional plane jets.

레이놀즈 응력의 난류구배수송을 위한 텐서시간척도 (Tensorial Time Scales for Turbulent Gradient Transport of Reynolds Stresses)

  • 조중원;김경연;성형진;정명균
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.687-695
    • /
    • 2005
  • On the notion that the Reynolds stresses are transported with different time scale depending on the transport direction, the third order velocity correlations are represented by a new turbulent gradient transport model with tonsorial Lagrangian time scale. In order to verify the proposed model, DNS data are first obtained in a turbulent channel flow at Re = 180 and tonsorial Lagrangian time scales are computed. The present model predictions are compared with DNS data and those predicted by the third-order turbulent transport model of Hanjalic and Launder that uses a scalar time scale. The result demonstrates that the Reynolds stresses are indeed transported with different time scale depending on the transport direction.

단일 주파수 가진을 이용한 원형 제트의 난류 억제 (Suppression of Turbulence in a Circular Jet Using a Single Frequency Excitation)

  • 박정영;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.241-244
    • /
    • 2002
  • Large eddy simulation of a circular jet at the Reynolds number of 10000 is performed to investigate turbulence suppression effect with single frequency excitation at the non-dimensional frequency of 0.017. Instantaneous flow fields show that, with excitation, naturally occurring energetic vortices are suppressed through earlier saturation and breakdown of the shear layer vortices into fine grained turbulence. Due to the excitation, the Reynolds stresses are larger for the excited case near the jet and turbulence suppression begins afterward. The Reynolds normal stresses show largest suppression in the shear layer near the jet and in the centerline further downstream, while the Reynolds shear stress shows largest suppression in the shear layer at all the downstream locations.

  • PDF

정사각단면을 갖는 $180^{\circ}$ 곡관내의 2차 모멘트 난류모형에 관한 연구 (Study on the Second Moment Turbulence Model in a Square Sectioned $180^{\circ}$ Bend)

  • 김명호;염성현;최영돈
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1203-1217
    • /
    • 1994
  • In the present study, in order to analyze a turbulent flow in a square sectiond 180.deg. bend, Kim's low Reynolds number second moment turbulence closure is adopted. In this model, turbulence model constants in the wall region are modified as functions of turbulent Reynolds number by use of near wall turbulent universal properties based on Laufer's experimental results of Reynolds stress distriburions. Algebraic stress model and Reynolds stress equation model are used to verify the low Reynolds number second moment closure. The application of the present low Reynolds number algebraic stress model to the prediction of a square sectioned 180.deg. bend flow gives improved velocities and Reynolds stresses profiles compared with those obtained by using the van Driest mixing length model and present low Reynolds number Reynolds stress equation model.

DNS 자료를 이용한 개수로에서 이차흐름의 생성메커니즘 분석 (Analysis of Generating Mechanism of Secondary Flows in Turbulent Open-Channel Flows using DNS Data)

  • 정영훈;최성욱
    • 대한토목학회논문집
    • /
    • 제26권2B호
    • /
    • pp.139-144
    • /
    • 2006
  • 측벽이 존재하는 개수로 난류흐름에 대한 DNS 자료를 사용하여 레이놀즈 전단응력 및 이차흐름의 생성메커니즘을 규명하였다. 측벽 부근에서 이차흐름의 양상을 보면, 상부 및 하부 모서리 부근에서는 측벽을 향해 침투되는 이차흐름이 형성된 반면, 그 외의 영역에서는 수로 중앙을 향해 분출하는 이차흐름이 형성된 것으로 나타났다. 측벽 부근에서 레이놀즈 전단응력의 분포를 산정하였으며, 고유구조와 연계하여 분석하였다. 사분면 해석에서 측벽을 향해 침투되는 이차흐름이 생성된 영역에서는 쓸기현상이 지배적인 반면, 측벽으로부터 분출되는 이차흐름이 형성된 영역에서는 분출현상이 지배적인 것으로 나타났다. 또한 조건부 사분면 해석을 통해 레이놀즈 전단응력의 생성 및 이차흐름의 양상이 지배적인 고유구조의 방향성에 의해 결정된다는 것을 확인하였다.

선박의 저항성능 추정을 위한 EARSM 난류 모형의 활용 (Numerical Prediction of Ship Hydrodynamic Performances using Explicit Algebraic Reynolds Stress Turbulence Model)

  • 김유철;김광수;김진
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.67-77
    • /
    • 2014
  • In this study, Explicit Algebraic Reynolds Stress Model (EARSM) which is based on the existing ${\kappa}-{\omega}$ model has been applied to the flow field analysis around ship hulls. Existing transport equations for the turbulent kinetic energy and the dissipation rate are used in almost the same form and anisotropy terms of Reynolds stresses are newly considered. The well-known KVLCC2 and KCS hull forms are selected as validation cases, which were also used in 2010 Workshop on CFD in Ship Hydrodynamics. In case of KVLCC2 double model, comparison of mean velocity distribution, turbulent kinetic energy, and Reynolds stresses near the propeller plane has been carried out and wave elevation and wave profiles have been additionally studied for KCS and KVLCC2 with free surface models. Some improved results for mean velocity distribution at the propeller plane have been obtained while there is little change in free surface wave profiles.

열선유개계에 의한 180$^{\circ}$곡관을 갖는 정사각 단면의 덕트에서의 난유유동특성의 측정 (Measurement of turbulent flow characteristics of a square duct with a 180.deg. bend by hot wire anemometer)

  • 양승효;최영돈;유석재
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.900-915
    • /
    • 1988
  • 본 연구에서는 주유동 방향이 알려진 3차원 난류유동에서 열선유속계의 경사 형 프로브와 Ⅰ형 프로브를 회전시키므로써 3방향 속도성분과 6방향 레이놀즈 응력을 비교적 간편하고 정확히 측정하는 방법을 고안하여 사용하였다.