• 제목/요약/키워드: Reynolds Number Effects

검색결과 519건 처리시간 0.022초

캣워크 구조물의 공기역학적 특성 (Aerodynamic Characteristics of Catwalk Structures)

  • 이승호;이한규;권순덕;김종화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.105-110
    • /
    • 2011
  • Catwalk structures are temporary walk ways for erection of main cables in suspension bridge. The aerodynamic characteristics of the catwalk structures are not well studied even though the catwalk structures are sensitive to wind action because of its flexibility. Present study demonstrates technical results obtained from wind tunnel tests of various catwalk structures. To obtain the aerostatic force coefficients of the floor system of catwalk, 1/14 and 1/4 scaled partial rigid models were fabricated and tested at the wind tunnel. In order to investigate the Reynolds number effects, the aerostatic force coefficients were measured at various wind velocities ranged from 5m/s to 30m/s. The test results revealed that the Reynolds number effects on aerostatic coefficients were not significant for the catwalk floor systems. An empirical equation for aerostatic force coefficients of catwalk are proposed based on the measured results.

  • PDF

Numerical Analysis of the Three-Dimensional Wake Flow and Acoustic Field around a Circular Cylinder

  • Kim, Tae-Su;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.319-325
    • /
    • 2010
  • For decades, researchers have rigorously studied the characteristics of flow traveling around blunt objects in order to gain greater understanding of the flow around aircraft, vehicles or vessels. Many different types of flow exist, such as boundary layer flow, flow separation, laminar and turbulent flow, vortex and vortex shedding; such types are especially observed around circular cylinders. Vortex shedding around a circular cylinder exhibits a two-dimensional flow structure possessing a Reynolds number within the range of 47 and 180. As the Reynolds number increases, the Karman vortex changes into a three-dimensional flow structure. In this paper, a numerical analysis was performed examining the flow and aero-acoustic field characteristics around a circular cylinder using an optimized high-order compact scheme, which is a high order scheme. The analysis was conducted with a Reynolds number ranging between 300 and 1,000, which belongs to B-mode flow around a circular cylinder. For a B-mode Reynolds number, a proper spanwise length is analyzed in order to obtain the characteristics of three-dimensional flow. The numerical results of the Strouhal number as well as the lift and drag coefficients according to Reynolds numbers are coincident with the other experimental results. Basic research has been conducted studying the effects an unstable three-dimensional wake flow on an aero-acoustic field.

Experimental study on Re number effects on aerodynamic characteristics of 2D square prisms with corner modifications

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • 제22권5호
    • /
    • pp.573-594
    • /
    • 2016
  • Simultaneous pressure measurements on 2D square prisms with various corner modifications were performed in uniform flow with low turbulence level, and the testing Reynolds numbers varied from $1.0{\times}10^5$ to $4.8{\times}10^5$. Experimental models were a square prism, three chamfered-corner square prisms (B/D=5%, 10%, and 15%, where B is the chamfered corner dimension and D is the cross-sectional dimension), and six rounded-corner square prisms (R/D =5%, 10%, 15%, 20%, 30%, and 40%, where R is the corner radius). Experimental results of drag coefficients, wind pressure distributions, power spectra of aerodynamic force coefficients, and Strouhal numbers are presented. Ten models are divided into various categories according to the variations of mean drag coefficients with Reynolds number. The mean drag coefficients of models with $B/D{\leq}15%$ and $R/D{\leq}15%$ are unaffected by the Reynolds number. On the contrary, the mean drag coefficients of models with R/D=20%, 30%, and 40% are obviously dependent on Reynolds number. Wind pressure distributions around each model are analyzed according to the categorized results.The influence mechanisms of corner modifications on the aerodynamic characteristics of the square prism are revealed from the perspective of flow around the model, which can be obtained by analyzing the local pressures acting on the model surface.

A numerical investigation of the effects of Reynolds number on vortex-induced vibration of the cylinders with different mass ratios and frequency ratios

  • Kang, Zhuang;Zhang, Cheng;Chang, Rui;Ma, Gang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.835-850
    • /
    • 2019
  • The numerical simulations for the Vortex-induced Vibration (VIV) of the cylinders with different combinations of mass ratio and frequency ratio were performed under the Reynolds (Re) number ranges of 1450-10200, 5800-40800 and 13050-91800 by using the embedded programs in OpenFoam. By combining with the modified SST k-ω turbulence model, the coupled Unsteady Reynolds-Average Navier-Stokes equations and double-degree-of-freedom vibration equations were solved. After analyzing the results, it is found that the some characteristics of the VIV have changed with the increase of the range of Re number, and the effects of Re number on vibration characteristics are also different under different combinations of mass ratio and frequency ratio. On this basis, the influence law of Re number on the characteristics of VIV of the cylinders is summarized, which can provide a reference for the research of VIV under higher Re number.

Effects of Non-absorbable Gases in the Absorption of Water Vapor by Aqueous LiBr Solution Film on Horizontal Tube Banks

  • Kwon, Ky-Seok;Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.19-27
    • /
    • 2001
  • In the present study, the effects of film Reynolds number (60∼200) and volumetric content of non-absorbable gases (0∼10%) in water vapor on the absorption process of aqueous LiBr solution were investigated experimentally. The formation of solution film on the horizontal tubes of six rows was observed to be complete for Re>100. Transition film Reynolds number was found to exist above which the Nusselt number and Schmidt number diminishes with solution flow rate. As the concentration of non-absorbable gases increased, mass transfer rate decreased more seriously than heat transfer rate did. the degradation effects of non-absorbable gases seemed to be significant especially when small amount of non-absorbable gases was introduced to the pure water vapor.

  • PDF

회전하는 정사각단면 $90^{\circ}$곡관내 난류유동에 관한 수치해석적 연구 (Study on the Analysis of Turbulent Flow in a Rotating Square Sectioned $90^{\circ}$ Curved Duct)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2206-2222
    • /
    • 1995
  • In this study, the characteristics of the three-dimensional turbulence flow in a rotating square sectioned 90.deg. bend were investigated by numerical simulation. And a dimensionless number, Coriolis force ratio, primarily subjected to the feature of the flow in the rotating 90.deg. bend was obtained as a result of one-dimensional theory. In the simulation study, low Reynolds number ASM developed by Kim(1991) in the square sectioned 180.deg. bend flow was modified in order to consider the rotational effects in the testing flows. In the near wall region of low Reynolds number, four turbulence models were employed and compared in order to find the most appropriate model for the analysis of the rotating 90.deg. bend flow. By comparison of the results with the experimental data, it is shown that low Reynolds number Algebraic Stress Model with rotating terms reflects most correctly the rotational effects. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotation affect directly both the mean motion and the turbulent fluctuations. Their actions on the mean flow are to induce a secondary motion while their effects on turbulence are to modify the pressure strain.

A comprehensive high Reynolds number effects simulation method for wind pressures on cooling tower models

  • Cheng, X.X.;Zhao, L.;Ge, Y.J.;Dong, J.;Demartino, C.
    • Wind and Structures
    • /
    • 제24권2호
    • /
    • pp.119-144
    • /
    • 2017
  • The traditional method for the simulation of high Reynolds number (Re) effects on wind loads on cooling tower models in wind tunnels focuses only on the mean wind pressure distribution. Based on observed effects of some key factors on static/dynamic flow characteristics around cooling towers, the study reported in this paper describes a comprehensive simulation method using both mean and fluctuating wind pressure distributions at high Re as simulation targets, which is indispensable for obtaining the complete full-scale wind effects in wind tunnels. After being presented in this paper using a case study, the proposed method is examined by comparing the full covariance matrices and the cross-spectral densities of the simulated cases with those of the full-scale case. Besides, the cooling tower's dynamic structural responses obtained using the simulated wind pressure fields are compared with those obtained by using the full-scale one. Through these works, the applicability and superiority of the proposed method is validated.

난류채널유동에서 움직이는 벽면에 대한 수치연구 (Numerical Investigation of the Moving Wall Effects in Turbulent Channel Flows)

  • 황준혁;이재화
    • 한국가시화정보학회지
    • /
    • 제15권3호
    • /
    • pp.27-33
    • /
    • 2017
  • Direct numerical simulations of turbulent channel flows with moving wall conditions on the top wall are performed to examine the effects of the moving wall on the turbulent characteristics. The moving wall velocity only applied to the top wall with the opposite direction to the main flow is systematically varied to reveal the sustained-mechanism for turbulence. The turbulence statistics for the Couette-Poiseuille flow, such as mean velocity, root mean square of the velocity fluctuations, Reynolds shear stress and pre-multiplied energy spectra of the velocity fluctuations, are compared with those of canonical turbulent channel flows. The comparison suggests that although the turbulent activity on the top wall increases with increasing the Reynolds number, that on the bottom wall decreases, contrary to the previous finding for the canonical turbulent channel flows. The increase of the turbulent energy on the top wall is attributed to not only the increase of the Reynolds number but also elongation of the logarithmic layer due to increase of the wall layer on the top wall. However, because the logarithmic layer is shortened on the bottom wall due to the decrease of the wall layer, the turbulence energy on the bottom wall decreases despite of the increase of the Reynolds number.

5공프로우브의 보정에 영향을 주는 유동변수들에 대한 실험적 연구 (Experimental investigation of flow parameters influencing the calibration of five-hole probes)

  • 이상우;윤태진
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.637-649
    • /
    • 1997
  • Effects of cone angle, pressure-hole orientation and Reynolds number on the five-hole probe calibration have been investigated for eight large-scale conical five-hole probes, which have either perpendicular pressure holes or forward-facing pressure holes for the cone angles of 45 deg, 60 deg, 75 deg and 90.deg. Pitch and yaw angles are changed from -40 deg to +40 deg with an interval of 5 deg, respectively, when the probe Reynolds numbers are 1.77*10$^{4}$, 3.53*10$^{4}$ and 7.06*10$^{4}$. The result shows that larger cone angle results in more sensitive changes in the calibration coefficients. In the case that the cone angle is 45 deg, the pitch-angle and yaw-angle coefficients of the five-hole probe with the perpendicular pressure holes show a very different trend compared with those of the five-hole probe with the forward-facing pressure holes. On the other hand, when the cone angle is more than 60 deg, each calibration coefficient is nearly independent of the pressure-hole orientation. Additionally, the effects of the Reynolds number on the calibration coefficients are also reported in detail.

근적외선 열풍기의 복합열전달에 관한 수치적 연구 (NUMERICAL STUDY ON COMBINED HEAT TRANSFER IN NIR HEATING CHAMBER)

  • 최훈기;유근종;김인호
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.7-13
    • /
    • 2007
  • Numerical analysis is carried out for combined heat transfer in an indirected NIR(Near Infrared Ray) heating chamber. Reynolds number and shapes of absorbed cylinder are known as important parameters on the combined heat transfer effects. Reynolds number based on the outer diameter of the cylinder is varied from $10^3$ to $3{\times}10^5$. Four difference heat transfer regimes are observed: forced convection and radiative heat transfer on the outer surface of the cylinder, pure conduction in the cylinder body, pure natural convection and radiation between lamp surface and inner surface of the cylinder, and radiation from the lamp. Flow and temperature characteristics are presented with iso-contour lines for the absorbed circular and elliptic cylinders to compare their differences. The convective and radiative heat transfer fluxes are also compared with different Reynolds numbers. As usual, Reynolds number is an important factor to estimate increasing convective heat transfer as it increases. The shape of absorbed cylinder results overall heat transfer rates remain unchanged.