• Title/Summary/Keyword: Reynolds 수

Search Result 846, Processing Time 0.032 seconds

Numerical simulation of flow characteristics and pollutant transport at river confluence (하천 합류부의 흐름특성 및 오염물의 혼합거동 모의)

  • Yun, Se Hun;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.91-91
    • /
    • 2022
  • 하천 합류부에서 수체의 흐름은 매우 역동적으로 변화하며 합류부의 복잡한 3차원 흐름과 난류 구조는 2차류(secondary currents)의 강도변화, 전단층(shear layer)의 뒤틀림 그리고 재순환구역(recirculation zone)의 발생 등 합류부에서의 독특한 특징을 형성한다. 이러한 특징들의 변화는 수체의 흐름구조 뿐만 아니라 하천으로 유입된 오염물의 거동에도 영향을 준다. 기존의 합류부 연구들은 주로 본류와 지류의 합류각이나 유량비에 차이를 두어 합류부의 특징 변화를 모의하였다. 하지만 실제 자연하천에서 홍수방지를 위한 수심확보, 건축자재의 골재수집 등 다양한 목적으로 수행되는 본류의 준설작업으로 인해 발생하는 본류와 지류의 하상면 단차 또한 합류부의 특성에 영향을 미치는 주요한 인자 중 하나이다. 단차가 커짐에 따라 증가하는 지류수체의 낙차는 이차류의 강화를 야기하며 이는 합류부에서의 유속구조를 변화시켜 흐름을 가속시키거나 지체시키며 오염물의 혼합에 영향을 미친다. 본 연구에서는 3차원 수치모의를 통해 90도로 합류되는 수로에서의 흐름구조와 오염물의 혼합에 단차비와 유량비가 미치는 영향을 모의하였다. 유동장 해석을 위해 3차원 RANS (Reynolds-averaged Navier-Stoke) 방정식을 사용하였으며 난류해석은 k-𝜔 SST 모델을 이용하였다. 본류의 경우 11.4m의 수로 연장을 갖고, 하폭은 0.3m이며 수심은 단차의 크기에 따라 변화한다. 지류의 경우는 수로연장 1m, 하폭 및 수로깊이는 0.1m이다. 수치결과의 검증을 위해 이주하(2013)이 수행한 실내 합류수로의 실험결과를 이용하였다. 모의결과를 통해 파악한 합류부의 흐름특성을 이용하여 적절한 2차원 분산계수를 산정한다. 자연하천에서 오염물의 혼합거동을 효과적으로 모의하기 위해 수심 평균된 2차원 이송-분산모형을 이용하는데 이때 적절한 분산계수의 산정이 필수적이다. 본 연구에서는 합류 후 흐름방향에 따라 분산특성이 상이한 구간을 구분하여 분산계수를 산정하였으며 이를 통해 오염물의 거동을 정확하게 모의하였다.

  • PDF

A RANS modeling of backward-facing step turbulent flow in an open channel (개수로에서의 후향단차 난류 흐름 RANS 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • The backward-facing step (BFS) is a benchmark geometry for analyzing flow separation occurred at the edge and resulting development of shear layer and recirculation zone that are occupied by turbulent flow. It is important to accurately reproduce and analyze the mean flow and turbulence statistics of such flows to design physically stable and performance assurance structure. We carried out 3D RANS computations with widely used, two representative turbulence models, k-ω SST and RNG k-ε, to reproduce BFS flow at the Reynolds number of 23,000 and the Froude number of 0.22. The performance of RANS computations is evaluated by comparing numerical results with an experimental measurement. Both RANS computations with two turbulence models appear to reasonably well reproduce mean flow in the shear layer and recirculation zone, while RNG k-ε computation results in about 5% larger velocity between the outer edge of boundary layer and the free surface above the recirculation zone than k-ω SST computation and experiment. Both turbulence models underestimate the shear stress distribution experimentally observed just downstream of the sharp edge of BFS, while shear stresses computed in the boundary layer downstream of reattachment point are agree reasonably well with experimental measurement. RNG k-ε modeling reproduces better shear stress distribution along the bottom boundary layer, but overestimates shear shear stress in the approaching boundary layer and above the bottom boundary layer downstream of the BFS.

Large eddy simulation of a steady hydraulic jump at Fr = 7.3 (Fr = 7.3의 정상도수 큰와모의)

  • Paik, Joongcheol;Kim, Byungjoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1049-1058
    • /
    • 2023
  • The flow passing through river-crossing structures such as weirs and low-fall dams is dominated by rapidly varied flow including hydraulic jump. The intense unsteadiness of flow velocity and free surface profile affects the stability of such hydraulic structures. In particular, the steady hydraulic jump generated at high Froude number conditions includes remarkably air entrainment, making the flow characteristics more complicated. In this study, a large-eddy simulation was performed for turbulence effect and the hybrid VoF technique to simulate the steady hydraulic jump at the Froude number of 7.3 and the Reynolds number of 15,700. The results of the numerical simulation showed that the instantaneous maximum pressure and time-average pressure distribution calculated on the bottom surface downstream of the structure could be reasonably well reproduced being in good agreement with the experimental values. However, the instantaneous minimum pressure distribution in the direct downstream of the structure shows the opposite pattern to the target experimental measurement value. However, the numerical simulation performed in this study is considered to reasonably predict the minimum pressure distributions observed in various experiments conducted at similar conditions. The vertical distributions of flow velocity and air concentration computed in the center of the hydraulic jump were found to be in good agreement with the experimental results measured under similar conditions, showing self-similarity. These results show that the large eddy simulation and hybrid VoF techniques applied in this study can reproduce the hydraulic jump with strong air entrainment and the resulting intense free surface and pressure fluctuations at high Froude number conditions.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(1) - Development of Optimization Algorithm and Techniques for Large-Scale and Highly Nonlinear Flow Problem (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(1) - 대용량, 비선헝 유체의 최적화를 위한 알고리즘 및 테크닉의 개발)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.661-669
    • /
    • 2007
  • Eyer since the Prandtl's experiment in 1934 and X-21 airjet test in 1950 both attempting to reduce drag, it was found that controlling the velocities of surface for extremely fast-moving object in the air through suction or injection was highly effective and active method. To obtain the right amount of suction or injection, however, repetitive trial-and error parameter test has been still used up to now. This study started from an attempt to decide optimal amount of suction and injection of incompressible Navier-Stokes by employing optimization techniques. However, optimization with traditional methods are very limited, especially when Reynolds number gets high and many unexpected variables emerges. In earlier study, we have proposed an algorithm to solve this problem by using step by step method in analysis and introducing SQP method in optimization. In this study, we propose more effective and robust algorithm and techniques in solving flow optimization problem.

Thermal and Flow Analysis of a Driving Controller for Active Destruction Protections (능동 파괴 방호 구동제어기의 열 유동 해석)

  • Ryu, Bong-Jo;Oh, Bu-Jin;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.235-242
    • /
    • 2017
  • A driving controller for active destruction protections can be applied to machinery, aerospace and military fields. In particular, this controller can be used to track and attack enemy flying objects through the active control. It is important to ensure reliability of the driving controller since its operation should be kept with precision to the target point. The temperature of the environment where the driving controller is used is about -32 C ~ 50 C (241~323 ). Heat generated in the driving controller should be maintained below a certain threshold (85 C (358 )) to ensure reliability; therefore, the study and analysis of the heat flow characteristics in the driving controller are required. In this research, commercial software Solid-Works Flow Simulation was used for the numerical simulation assuming a low Reynolds number turbulence model and an incompressible viscous flow. The goal of this paper is to design the driving controller safely by analyzing the characteristics of the heat flow inside of the controller composed of chips or boards. Our analysis shows temperature distributions for boards and chips below a certain threshold.

Topology Optimization of Incompressible Flow Using P1 Nonconforming Finite Elements (P1 비순응 요소를 이용한 비압축성 유동 문제의 위상최적화)

  • Jang, Gang-Won;Chang, Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1139-1146
    • /
    • 2012
  • An alternative approach for topology optimization of steady incompressible Navier-Stokes flow problems is presented by using P1 nonconforming finite elements. This study is the extended research of the earlier application of P1 nonconforming elements to topology optimization of Stokes problems. The advantages of the P1 nonconforming elements for topology optimization of incompressible materials based on locking-free property and linear shape functions are investigated if they are also valid in fluid equations with the inertia term. Compared with a mixed finite element formulation, the number of degrees of freedom of P1 nonconforming elements is reduced by using the discrete divergence-free property; the continuity equation of incompressible flow can be imposed by using the penalty method into the momentum equation. The effect of penalty parameters on the solution accuracy and proper bounds will be investigated. While nodes of most quadrilateral nonconforming elements are located at the midpoints of element edges and higher order shape functions are used, the present P1 nonconforming elements have P1, {1, x, y}, shape functions and vertex-wisely defined degrees of freedom. So its implentation is as simple as in the standard bilinear conforming elements. The effectiveness of the proposed formulation is verified by showing examples with various Reynolds numbers.

Numerical Technique to Analyze the Flow Characteristics of a Propeller Using Immersed Boundary Lattice Boltzmann Method (가상경계 격자볼쯔만법을 이용한 프로펠러의 유동특성해석 방법에 관한 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.441-448
    • /
    • 2016
  • The thrust force created by a propeller depends on the incoming flow velocity and the rotational velocity of the propeller. The performance of the propeller can be described by dimensionless variables, advanced ratio, thrust coefficient, and power coefficient. This study included the application of the immersed boundary lattice Boltzmann method (IBLBM) with the stereo lithography (STL) file of the rotating object for performance analysis. The immersed boundary method included the addition of the external force term to the LB equation defined by the velocity difference between the lattice points of the propeller and the grid points in the domain. The flow by rotating a 4-blade propeller was simulated with various Reynolds numbers (Re) (including 100, 500 and 1000), with advanced ratios in the range of 0.2~1.4 to verify the suggested method. The typical tendency of the thrust efficiency of the propeller was obtained from the simulation results of different advanced ratios. It was also necessary to keep the maximum mesh size ratio of the propeller surface to a grid size below 3. Additionally, a sufficient length of the downstream region in the domain was maintained to ensure the numerical stability of the higher Re and advanced ratio flow.

Study on the Scale Effect of Viscous Flows around the Ship Stern (선미 점성 유동장에 미치는 척고효과에 관한 연구)

  • Kwak, Y.K.;Min, K.S.;Oh, K.J.;Kang, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Viscous flow around actual ship is calculated by an use of RANS equations. The propriety of this computing method, usefulness to hull form design and the scale effect which is the effect of viscous flow depending on the scale of ship model are investigated. Reynolds stress is modelled by using k-${\varepsilon}$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the arbitrary 3-dimensional shape of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM. In the calculation of pressure, SIMPLE method is adopted and the solution of the discretized equation is obtained by the line-by-line method with the use of TDMA The calculations of two ships, 4410 TEU container carrier and 50,000 DWT class bulk carrier, are performed at model and actual ship scale. The results are compared and discussed with the model test results which are viscous resistance, nominal wake distribution at propeller plane and limiting streamline on the hull surface. They describe the effect of stem form and the scale effect very well. In particular, the calculated nominal wake distribution and limiting streamline are agreed qualitatively with the experiments and the viscous resistance values are estimated within ${\pm}5%$ difference from the resistance tests.

  • PDF

A Study on the Determination of the Seasonal Heat Transfer Coefficient in KURT Under Forced Convection (강제대류시 계절에 따른 KURT 내 열전달계수 결정에 관한 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Hwang, In-Phil;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.189-199
    • /
    • 2010
  • In a high-level waste (HLW) repository, heat is generated by the radioactive decay of the waste. This can affect the safety of the repository because the surrounding environment can be changed by the heat transfer through the rock. Thus, it is important to determine the heat transfer coefficient of the atmosphere in the underground repository. In this study, the heat transfer coefficient was estimated by measuring the indoor environmental factors in the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) under forced convection. For the experiment, a heater of 5 kw capacity, 2 meters long, was inserted through the tunnel wall in the heating section of KURT in order to heat up the inside of the rock to $90^{\circ}C$, and fresh air was provided by an air supply fan connected to the outside of the tunnel. The results showed that the average air velocity in the heating section after the provision of the air from outside of the tunnel was 0.81 m/s with the Reynolds number of 310,000~340,000. The seasonal heat transfer coefficient in the heating section under forced convection was $7.68\;W/m^2{\cdot}K$ in the summer and $7.24\;W/m^2{\cdot}K$ in the winter.

Comparative Evaluation of Behavior Analysis of Rectangular Jet and Two-dimensional Jet (사각형제트와 2차원제트의 거동해석의 비교 평가)

  • Kwon, Seok Jae;Cho, Hong Yeon;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.641-649
    • /
    • 2006
  • The behavior of a three-dimensional pure rectangular water jet with aspect ratio of 10 was experimentally investigated based on the results of the mean velocity field obtained by PIV. The saddle back distribution was observed in the lateral distribution along the major axis. The theoretical centerline velocity equation derived from the point source concept using the spreading rate for the axisymmetric jet was in good agreement with the measured centerline velocity and gave the division of the potential core region, two-dimensional region, and axisymmetric region. The range of the two-dimensional region divided by the criterion of the theoretical centerline velocity decay for the aspect ratio of 10 was observed to be smaller than that of the transition region. The applicability of the two-dimensional model to the behavior of the rectangular jet with low aspect ratio or the wastewater discharged from a multiport diffuser in the deep water of real ocean may result in significant error in the transition and axisymmetric regions after the two-dimensional region. In the two-dimensional region, the Gaussian constant tended to be conserved, and the spreading rate slightly decreased at the end of the two-dimensional region. The normalized turbulent intensity along the centerline of the jet initially abruptly increased and showed relatively higher intensity for higher Reynolds number.