• Title/Summary/Keyword: Reynolds 수

Search Result 846, Processing Time 0.026 seconds

Reynolds Number Effects on the Near-Wake of an Oscillating Naca 4412 Airfoil, Part 1 : Mean Velocity Field (진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 1: 평균속도장)

  • Jang,Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.15-25
    • /
    • 2003
  • An experimental. study is carried out to investigate the near-wake characteristics of an airfoil oscillating in pitch. An NACA 4412 airfoil is sinusoidally pitched about the quarter chord point between the angle of attack -6$^{\circ}$ and +6$^{\circ}$. A hot-wire anemometer is used to measure the phase-averaged mean velocities in the near-wake region of an oscillating airfoil. The freestream velocities of present work are 3.4, 12.4, 26.2 m/s, and the corresponding Reynolds numbers are 5.3${\times}10^4$, 1.9${\times}10^5$, 4.l${\times}10^5$, and the reduced frequency is 0.1. Streamwise velocity profiles are presented to show the Reynolds number effects on the near-wake region behind an airfoil oscillating in pitch. All the cases in these measurements show that the velocity defects by the change of the Reynolds number are very large at the lowest Reynolds number $R_N$=5.3${\times}10^4$: and are small at the other Reynolds numbers ($R_N$=1.9${\times}10^5$ and 4.l${\times}10^5$) in the near-wake region. A significant difference of phase-averaged mean velocity between 5.3${\times}10^4$, and 1.9${\times}10^5$ is observed. The present study shows that a critical value of Reynolds number in the near-wake of an oscillating airfoil exists in the range between 5.3${\times}10^4$, and 1.9${\times}10^5$.

Heat transfer characteristics between a rotating flat plate and an impinging water jet (회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구)

  • 전성택;이종수;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

The Study on Drag Coefficient Characteristic of Obstacles in Open Channel (개수로 내 장애물의 항력계수 특성에 관한 연구)

  • Kim, Ji-Sung;Im, Dong-Kyun;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1894-1899
    • /
    • 2008
  • 하천 내의 자생수목군에 의한 자연적인 흐름저항의 증가, 식재를 통한 인위적인 흐름저항의 증가, 교각 등의 구조물로 인한 흐름저항을 배수계산에 반영하기 위하여 일반적으로 Manning n값이 사용된다. 그러나 흐름 장애물로 인하여 증가된 Manning n값의 선정은 Chow(1950) 등이 제시한 도표를 활용하는 방법과 같이 공학적 판단을 요하는 작업이다. 그러므로 객관적으로 흐름저항을 산정할 수 있는 기법의 개발이 필요하며, 이를 위한 기초연구로 본 연구에서는 개수로 내 장애물의 항력계수 특성에 대하여 분석하고자 한다. 일반적으로 항력계수는 유체의 유속에 따라 변화되므로, Reynolds 수 또는 Froude 수에 따라 변화되는 것으로 알려져 있다. 그러나 그 범위가 연구자에 따라 상이하여 이를 정량화 할 필요가 있으며, 본 연구에서는 실험자료로부터 개수로 내 장애물의 항력계수 특성을 분석하고, 개수로에서 일반적으로 발생할 수 있는 Reynolds 수 또는 Froude 수 범위에서 기존 연구결과들을 비교분석하여 항력계수의 범위를 정량적으로 정립하고자 한다. 일반적인 상류 흐름조건에서 평균 항력계수($C_D$)는 1.11로 계산되었고, Froude 수의 증가에 따라 항력계수의 변동성이 점차 증가하였으며, 이러한 결과로부터 개수로 내 장애물로 인한 흐름저항을 반영하기 위하여 Manning n값으로 산정된 결과는 평균 0.01의 편차를 보이는 것으로 분석되었다.

  • PDF

A Study on Motion of Single Ball with Low Reynolds Number at Performed Interface Layers (액상 계면층을 이용한 저 레이놀즈수 단일강구의 운동연구)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.117-126
    • /
    • 1987
  • The author has analysed profile of flow in rear of motion with single ball with low Reynolds number performed interface layers. For each system whose viscosity of the lower phase is as large as or large that of the upper phase, the profile has based on the thickness of the ball in the lower phase is nearly independent of both the ball single and the physical properties of the upper phase of the solution. The examine of the characteristics between Darwin's total displacement of the fluid and data obtained in this study, the averaged volume of each cases was corrected by the viscosity in the lower phase. When the viscosity in the lower phase is less than that of the upper phase, the volume based on the displacement of the fluid in rear region of ball are influenced by both ball size and the viscosity ratio of the upper phase to the lower phase. In the range of the Reynolds number less than a constant values, the volume ratio is influenced by both Reynolds number and Moltion number but mainly Reynolds. In range of Reynolds number over than the value, the volume ratio is independent of Reynolds number, but influenced by Moltion number.

  • PDF

A Study on the Inlet Pressure Build-Up at Bearing Entrance (베어링 입구에서 발생하는 선단압력에 관한 연구)

  • 김종수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1921-1930
    • /
    • 1993
  • In order to evaluate the inlet pressure correctly, the full Navier-Stokes equations are solved numerically for the computational domain which covers the cavity region between pads as well as the bearing film. A nonuiform grid system is adopted to reduce the number of grid points, and the numerical solutions are obtained for a wide range of Reynolds number in laminar regime with various values of the distance between pads. The numerical results show that the inlet pressure is significantly affected by Reynolds number and the distance between pads. An expression for the loss coefficient in terms of Reynolds number and non-dimensional distance between pads is obtained on the basis of the numerical results. It is found that the inlet pressure over the whole range of numerical solutions can be fairly accurately estimated by applying the formula for the loss coefficient to the extended Bernoulli equation.

Experimental Study on the Unsteady Behavior of a Confined Impinging Slot Jet (국한 충돌 슬롯 제트의 비정상 거동에 대한 실험적 연구)

  • Kim, Kyung-Chun;Oh, Sung-Jin;Lee, In-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 2005
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated by using cinematic Particle Image Velocimetry technique. The jet Reynolds number was varied from 250 to 1000 for a fixed jet-to-plate spacing of H/W=5. We found that the vortical structures in the shear layer are developed with increase of Reynolds number and that the jet becomes unsteady by the interaction of vortex pairs between 500 and 750 of Reynolds number. Vortical structures and their temporal evolution are verified by using proper orthogonal decomposition.

  • PDF

Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel (주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구)

  • 김태용;이재용;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

NUMERICAL ANALYSIS OF ERGUN'S EQUATION FOR INTERIOR BALLISTIC ANALYSIS (강내탄도 해석에 사용되는 Ergun식에 관한 수치적 연구)

  • Bae, S.W.;Sung, H.G.;Roh, T.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.473-478
    • /
    • 2010
  • In this study, the Ergun's equation has been verified in order to calculate pressure drop of the two phase flow. The equation had been used in the high Reynolds number region for interior ballistic analysis in spite of being verified in the low Reynolds number region. Therefore additional verification seems to be inevitable. Thus, the validity of the equation has been verified using CFD in the high Reynolds number cases of the diameter-particle ratio 10, 13 and 16.

  • PDF

Suppression of Turbulence in a Circular Jet Using a Single Frequency Excitation (단일 주파수 가진을 이용한 원형 제트의 난류 억제)

  • Park Jeongyoung;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.241-244
    • /
    • 2002
  • Large eddy simulation of a circular jet at the Reynolds number of 10000 is performed to investigate turbulence suppression effect with single frequency excitation at the non-dimensional frequency of 0.017. Instantaneous flow fields show that, with excitation, naturally occurring energetic vortices are suppressed through earlier saturation and breakdown of the shear layer vortices into fine grained turbulence. Due to the excitation, the Reynolds stresses are larger for the excited case near the jet and turbulence suppression begins afterward. The Reynolds normal stresses show largest suppression in the shear layer near the jet and in the centerline further downstream, while the Reynolds shear stress shows largest suppression in the shear layer at all the downstream locations.

  • PDF