• Title/Summary/Keyword: Reviews

Search Result 5,528, Processing Time 0.026 seconds

Differential effects of online word-of-mouth about attractive and one-dimensional Kano attributes on hospital selection (온라인 입소문이 병원선택에 미치는 영향의 카노속성에 따른 차이)

  • Kim, Sujung;Kim, Junyong
    • Korea Journal of Hospital Management
    • /
    • v.27 no.3
    • /
    • pp.1-14
    • /
    • 2022
  • Purposes: This purpose of this study was to check how much the online word of mouth influences on customer's hospital selection according to Kano's model. Methodology: Kano classified the attributes that affect customer's satisfaction into attractive, one-dimensional, indifferent, must-be, and reverse attributes. Among them, attractive and one-dimensional attributes make up the largest portion in hospital selection. Based on this, the influence of positive or negative online reviews on the selection of hospitals was investigated. Differentiated service was selected as the attractive attributes, and a kind, sufficient explanation was selected as the one-dimensional attributes. Then a questionnaire was conducted how much the positive or negative online reviews influence on hospital selection, respectively. It was conducted from August 7 to September 7, 2021 for medical consumers in their 20s and older who have used medical services for the past 3 years, and the final 142 questionnaires were analyzed. All data was analyzed by chi-square and two-way ANOVA using SPSS ver 25.0. Findings: The results showed that, in one-dimensional attributes, the difference between positive and negative reviews was not statistically significant, but in attractive attributes, positive and negative reviews showed a statistically significant difference. It suggests that positive reviews on attractive attributes had a greater influence on hospital selection. In terms of hospital selection, when the experimental participants were exposed to the positive reviews, the hospital selection ratio did not differ by Kano's attributes, but to the negative reviews it differed. The hospital selection ratio, even after they were exposed to negative reviews, was higher in the attractive attributes than in the one-dimensional attributes. Practical Implication: This study confirmed that hospital selection is influenced differently depending on the Kano's attributes and the direction of the reviews, and suggests that marketers should respond differently to each Kano's attributes when they deal with online reviews of hospitals.

Reviews Analysis of Korean Clinics Using LDA Topic Modeling (토픽 모델링을 활용한 한의원 리뷰 분석과 마케팅 제언)

  • Kim, Cho-Myong;Jo, A-Ram;Kim, Yang-Kyun
    • The Journal of Korean Medicine
    • /
    • v.43 no.1
    • /
    • pp.73-86
    • /
    • 2022
  • Objectives: In the health care industry, the influence of online reviews is growing. As medical services are provided mainly by providers, those services have been managed by hospitals and clinics. However, direct promotions of medical services by providers are legally forbidden. Due to this reason, consumers, like patients and clients, search a lot of reviews on the Internet to get any information about hospitals, treatments, prices, etc. It can be determined that online reviews indicate the quality of hospitals, and that analysis should be done for sustainable hospital marketing. Method: Using a Python-based crawler, we collected reviews, written by real patients, who had experienced Korean medicine, about more than 14,000 reviews. To extract the most representative words, reviews were divided by positive and negative; after that reviews were pre-processed to get only nouns and adjectives to get TF(Term Frequency), DF(Document Frequency), and TF-IDF(Term Frequency - Inverse Document Frequency). Finally, to get some topics about reviews, aggregations of extracted words were analyzed by using LDA(Latent Dirichlet Allocation) methods. To avoid overlap, the number of topics is set by Davis visualization. Results and Conclusions: 6 and 3 topics extracted in each positive/negative review, analyzed by LDA Topic Model. The main factors, consisting of topics were 1) Response to patients and customers. 2) Customized treatment (consultation) and management. 3) Hospital/Clinic's environments.

Too Much Information - Trying to Help or Deceive? An Analysis of Yelp Reviews

  • Hyuk Shin;Hong Joo Lee;Ruth Angelie Cruz
    • Asia pacific journal of information systems
    • /
    • v.33 no.2
    • /
    • pp.261-281
    • /
    • 2023
  • The proliferation of online customer reviews has completely changed how consumers purchase. Consumers now heavily depend on authentic experiences shared by previous customers. However, deceptive reviews that aim to manipulate customer decision-making to promote or defame a product or service pose a risk to businesses and buyers. The studies investigating consumer perception of deceptive reviews found that one of the important cues is based on review content. This study aims to investigate the impact of the information amount of review on the review truthfulness. This study adopted the Information Manipulation Theory (IMT) as an overarching theory, which asserts that the violations of one or more of the Gricean maxim are deceptive behaviors. It is regarded as a quantity violation if the required information amount is not delivered or more information is delivered; that is an attempt at deception. A topic modeling algorithm is implemented to reveal the distribution of each topic embedded in a text. This study measures information amount as topic diversity based on the results of topic modeling, and topic diversity shows how heterogeneous a text review is. Two datasets of restaurant reviews on Yelp.com, which have Filtered (deceptive) and Unfiltered (genuine) reviews, were used to test the hypotheses. Reviews that contain more diverse topics tend to be truthful. However, excessive topic diversity produces an inverted U-shaped relationship with truthfulness. Moreover, we find an interaction effect between topic diversity and reviews' ratings. This result suggests that the impact of topic diversity is strengthened when deceptive reviews have lower ratings. This study contributes to the existing literature on IMT by building the connection between topic diversity in a review and its truthfulness. In addition, the empirical results show that topic diversity is a reliable measure for gauging information amount of reviews.

Motives for Writing After-Purchase Consumer Reviews in Online Stores and Classification of Online Store Shoppers (인터넷 점포에서의 구매후기 작성 동기 및 점포 고객 유형화)

  • Hong, Hee-Sook;Ryu, Sung-Min
    • Journal of Distribution Research
    • /
    • v.17 no.3
    • /
    • pp.25-57
    • /
    • 2012
  • This study identified motives for writing apparel product reviews in online stores, and determined what motives increase the behavior of writing reviews. It also classified store customers based on the type of writing motives, and clarified the characteristics of internet purchase behavior and of a demographic profile. Data were collected from 252 females aged 20s' and 30s' who have experience of reading and writing reviews on online shopping. The five types of writing motives were altruistic information sharing, remedying of a grievance and vengeance, economic incentives, helping new product development, and the expression of satisfaction feelings. Among five motives, altruistic information sharing, economic incentives, and helping new product development stimulate writing reviews. Store customers who write reviews were classified into three groups based on their writing motive types: Other consumer advocates(29.8%), self-interested shoppers(40.5%) and shoppers with moderate motives(29.8%). There were significant differences among three groups in writing behavior (the frequency of writing reviews, writing intent of reviews, duration of writing reviews, and frequency of online shopping) and age. Based on results, managerial implications were suggested. Long Abstract : The purpose of present study is to identify the types of writing motives on online shopping, and to clarify the motives affecting the behavior of writing reviews. This study also classifies online shoppers based on the motive types, and identifies the characteristics of the classified groups in terms of writing behavior, frequency of online shopping, and demographics. Use and Gratification Theory was adopted in this study. Qualitative research (focus group interview) and quantitative research were used. Korean women(20 to 39 years old) who reported experience with purchasing clothing online, and reading and writing reviews were selected as samples(n=252). Most of the respondents were relatively young (20-34yrs., 86.1%,), single (61.1%), employed(61.1%) and residents living in big cities(50.9%). About 69.8% of respondents read and 40.5% write apparel reviews frequently or very frequently. 24.6% of the respondents indicated an "average" in their writing frequency. Based on the qualitative result of focus group interviews and previous studies on motives for online community activities, measurement items of motives for writing after-purchase reviews were developed. All items were used a five-point Likert scale with endpoints 1 (strongly disagree) and 5 (strongly agree). The degree of writing behavior was measured by items concerning experience of writing reviews, frequency of writing reviews, amount of writing reviews, and intention of writing reviews. A five-point scale(strongly disagree-strongly agree) was employed. SPSS 18.0 was used for exploratory factor analysis, K-means cluster analysis, one-way ANOVA(Scheffe test) and ${\chi}^2$-test. Confirmatory factor analysis and path model analysis were conducted by AMOS 18.0. By conducting principal components factor analysis (varimax rotation, extracting factors with eigenvalues above 1.0) on the measurement items, five factors were identified: Altruistic information sharing, remedying of a grievance and vengeance, economic incentives, helping new product development, and expression of satisfaction feelings(see Table 1). The measurement model including these final items was analyzed by confirmatory factor analysis. The measurement model had good fit indices(GFI=.918, AGFI=.884, RMR=.070, RMSEA=.054, TLI=.941) except for the probability value associated with the ${\chi}^2$ test(${\chi}^2$=189.078, df=109, p=.00). Convergent validities of all variables were confirmed using composite reliability. All SMC values were found to be lower than AVEs confirming discriminant validity. The path model's goodness-of-fit was greater than the recommended limits based on several indices(GFI=.905, AGFI=.872, RMR=.070, RMSEA=.052, TLI=.935; ${\chi}^2$=260.433, df=155, p=.00). Table 2 shows that motives of altruistic information sharing, economic incentives and helping new product development significantly increased the degree of writing product reviews of online shopping. In particular, the effect of altruistic information sharing and pursuit of economic incentives on the behavior of writing reviews were larger than the effect of helping new product development. As shown in table 3, online store shoppers were classified into three groups: Other consumer advocates (29.8%), self-interested shoppers (40.5%), and moderate shoppers (29.8%). There were significant differences among the three groups in the degree of writing reviews (experience of writing reviews, frequency of writing reviews, amount of writing reviews, intention of writing reviews, and duration of writing reviews, frequency of online shopping) and age. For five aspects of writing behavior, the group of other consumer advocates who is mainly comprised of 20s had higher scores than the other two groups. There were not any significant differences between self-interested group and moderate group regarding writing behavior and demographics.

  • PDF

The Effects of Sentiment and Readability on Useful Votes for Customer Reviews with Count Type Review Usefulness Index (온라인 리뷰의 감성과 독해 용이성이 리뷰 유용성에 미치는 영향: 가산형 리뷰 유용성 정보 활용)

  • Cruz, Ruth Angelie;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.43-61
    • /
    • 2016
  • Customer reviews help potential customers make purchasing decisions. However, the prevalence of reviews on websites push the customer to sift through them and change the focus from a mere search to identifying which of the available reviews are valuable and useful for the purchasing decision at hand. To identify useful reviews, websites have developed different mechanisms to give customers options when evaluating existing reviews. Websites allow users to rate the usefulness of a customer review as helpful or not. Amazon.com uses a ratio-type helpfulness, while Yelp.com uses a count-type usefulness index. This usefulness index provides helpful reviews to future potential purchasers. This study investigated the effects of sentiment and readability on useful votes for customer reviews. Similar studies on the relationship between sentiment and readability have focused on the ratio-type usefulness index utilized by websites such as Amazon.com. In this study, Yelp.com's count-type usefulness index for restaurant reviews was used to investigate the relationship between sentiment/readability and usefulness votes. Yelp.com's online customer reviews for stores in the beverage and food categories were used for the analysis. In total, 170,294 reviews containing information on a store's reputation and popularity were used. The control variables were the review length, store reputation, and popularity; the independent variables were the sentiment and readability, while the dependent variable was the number of helpful votes. The review rating is the moderating variable for the review sentiment and readability. The length is the number of characters in a review. The popularity is the number of reviews for a store, and the reputation is the general average rating of all reviews for a store. The readability of a review was calculated with the Coleman-Liau index. The sentiment is a positivity score for the review as calculated by SentiWordNet. The review rating is a preference score selected from 1 to 5 (stars) by the review author. The dependent variable (i.e., usefulness votes) used in this study is a count variable. Therefore, the Poisson regression model, which is commonly used to account for the discrete and nonnegative nature of count data, was applied in the analyses. The increase in helpful votes was assumed to follow a Poisson distribution. Because the Poisson model assumes an equal mean and variance and the data were over-dispersed, a negative binomial distribution model that allows for over-dispersion of the count variable was used for the estimation. Zero-inflated negative binomial regression was used to model count variables with excessive zeros and over-dispersed count outcome variables. With this model, the excess zeros were assumed to be generated through a separate process from the count values and therefore should be modeled as independently as possible. The results showed that positive sentiment had a negative effect on gaining useful votes for positive reviews but no significant effect on negative reviews. Poor readability had a negative effect on gaining useful votes and was not moderated by the review star ratings. These findings yield considerable managerial implications. The results are helpful for online websites when analyzing their review guidelines and identifying useful reviews for their business. Based on this study, positive reviews are not necessarily helpful; therefore, restaurants should consider which type of positive review is helpful for their business. Second, this study is beneficial for businesses and website designers in creating review mechanisms to know which type of reviews to highlight on their websites and which type of reviews can be beneficial to the business. Moreover, this study highlights the review systems employed by websites to allow their customers to post rating reviews.

The Effect of Expert Reviews on Consumer Product Evaluations: A Text Mining Approach (전문가 제품 후기가 소비자 제품 평가에 미치는 영향: 텍스트마이닝 분석을 중심으로)

  • Kang, Taeyoung;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.63-82
    • /
    • 2016
  • Individuals gather information online to resolve problems in their daily lives and make various decisions about the purchase of products or services. With the revolutionary development of information technology, Web 2.0 has allowed more people to easily generate and use online reviews such that the volume of information is rapidly increasing, and the usefulness and significance of analyzing the unstructured data have also increased. This paper presents an analysis on the lexical features of expert product reviews to determine their influence on consumers' purchasing decisions. The focus was on how unstructured data can be organized and used in diverse contexts through text mining. In addition, diverse lexical features of expert reviews of contents provided by a third-party review site were extracted and defined. Expert reviews are defined as evaluations by people who have expert knowledge about specific products or services in newspapers or magazines; this type of review is also called a critic review. Consumers who purchased products before the widespread use of the Internet were able to access expert reviews through newspapers or magazines; thus, they were not able to access many of them. Recently, however, major media also now provide online services so that people can more easily and affordably access expert reviews compared to the past. The reason why diverse reviews from experts in several fields are important is that there is an information asymmetry where some information is not shared among consumers and sellers. The information asymmetry can be resolved with information provided by third parties with expertise to consumers. Then, consumers can read expert reviews and make purchasing decisions by considering the abundant information on products or services. Therefore, expert reviews play an important role in consumers' purchasing decisions and the performance of companies across diverse industries. If the influence of qualitative data such as reviews or assessment after the purchase of products can be separately identified from the quantitative data resources, such as the actual quality of products or price, it is possible to identify which aspects of product reviews hamper or promote product sales. Previous studies have focused on the characteristics of the experts themselves, such as the expertise and credibility of sources regarding expert reviews; however, these studies did not suggest the influence of the linguistic features of experts' product reviews on consumers' overall evaluation. However, this study focused on experts' recommendations and evaluations to reveal the lexical features of expert reviews and whether such features influence consumers' overall evaluations and purchasing decisions. Real expert product reviews were analyzed based on the suggested methodology, and five lexical features of expert reviews were ultimately determined. Specifically, the "review depth" (i.e., degree of detail of the expert's product analysis), and "lack of assurance" (i.e., degree of confidence that the expert has in the evaluation) have statistically significant effects on consumers' product evaluations. In contrast, the "positive polarity" (i.e., the degree of positivity of an expert's evaluations) has an insignificant effect, while the "negative polarity" (i.e., the degree of negativity of an expert's evaluations) has a significant negative effect on consumers' product evaluations. Finally, the "social orientation" (i.e., the degree of how many social expressions experts include in their reviews) does not have a significant effect on consumers' product evaluations. In summary, the lexical properties of the product reviews were defined according to each relevant factor. Then, the influence of each linguistic factor of expert reviews on the consumers' final evaluations was tested. In addition, a test was performed on whether each linguistic factor influencing consumers' product evaluations differs depending on the lexical features. The results of these analyses should provide guidelines on how individuals process massive volumes of unstructured data depending on lexical features in various contexts and how companies can use this mechanism from their perspective. This paper provides several theoretical and practical contributions, such as the proposal of a new methodology and its application to real data.

Investigation of Factors Affecting the Effects of Online Consumer Reviews (온라인 소비자 리뷰의 효과에 영향을 미치는 요인에 대한 고찰)

  • Lee, Ho Geun;Kwak, Hyun
    • Informatization Policy
    • /
    • v.20 no.3
    • /
    • pp.3-17
    • /
    • 2013
  • As electronic marketplaces grow and a large number of consumers exchange their opinions on products and services on the Internet, many studies have been conducted in the area of online consumer reviews. This paper analyzes the research trend of the online consumer reviews by investigating those studies in an attempt to provide future research directions. Many researchers have focused on the effects of online reviews on consumer behaviors as well as the usefulness of the online reviews. In particular, review contents, characteristics of reviewers/consumers and features of products/services have been identified as influencing factors on the effects of the online consumer reviews. For the review contents, the number and the volume of the contents have increasing effects on the online reviews, while the direction (positive vs. negative) of the contents has resulted in conflicting effects of the review. The reputation and trustfulness of reviewers, consumers' prior knowledge on the products, consumers' product involvement, and types of the products were investigated as these factors influence the effectiveness of the online consumer reviews. Social media (such as Facebook and Twitter) nowadays play an important role to disseminate online reviews among consumers. Thus, it is necessary to study how social media influence the effects of online reviews on consumers. Since some firms abuse the online reviews for their own sakes, we recognize the necessity for empirical studies on the side effects of the online reviews.

  • PDF

A Study on the Influence of Sentiment and Emotion on Review Helpfulness through Online Reviews of Restaurants (레스토랑의 온라인 리뷰를 통해 감성과 감정이 리뷰 유용성에 미치는 영향에 관한 연구)

  • Yao, Ziyan;Park, Jiyoung;Hong, Taeho
    • Knowledge Management Research
    • /
    • v.22 no.1
    • /
    • pp.243-267
    • /
    • 2021
  • Sentiment represents one's own state through the process of change to stimulus, and emotion represents a simple psychological state felt for a certain phenomenon. These two terms tend to be used interchangeably, but their meaning and usage are different. In this study, we try to find out how it affects the helpfulness of reviews by classifying sentiment and emotion through online reviews written by online consumers after purchasing and using various products and services. Recently, online reviews have become a very important factor for businesses and consumers. Helpful reviews play a key role in the decision-making process of potential customers and can be assessed through review helpfulness. The helpfulness of reviews is becoming increasingly important in practice as it is utilized in marketing strategies in business as well as in purchasing decision-making issues of consumers. And academically, the importance of research to find the factors influencing the helpfulness of reviews is growing. In this study, Yelp.com secured reviews on restaurants and conducted a study on how the sentiment and emotion of online reviews affect the helpfulness of reviews. Based on the prior research, a research model including sentiment and emotions for online reviews was built, and text mining analyzes how the sentiment and emotion of online reviews affect the helpfulness of online reviews, and the difference in the effects on emotions It was verified. The results showed that negative sentiment and emotion had a greater effect on review helpfulness, which was consistent with the negative bias theory.

Your Expectation Matters When You Read Online Consumer Reviews: The Review Extremity and the Escalated Confirmation Effect

  • Lee, Jung;Lee, Hong Joo
    • Asia pacific journal of information systems
    • /
    • v.26 no.3
    • /
    • pp.449-476
    • /
    • 2016
  • This study examines how an initially perceived product value affects consumer's purchase intention after reading online reviews with various tones. The study proposes that associations among initially perceived overall product value, degree of confirmation resulting from reading the reviews, and final purchase intention differ across review tones such that 1) when the tone is favorable, the effect of an initially perceived product value is stronger than when the tone is critical, and 2) when the tone is extreme, the effect of confirmation is stronger than when the tone is moderate. The survey was conducted with 276 online shopping mall users in Korea, and most of the hypotheses were supported. This study asserts that the effects of online reviews should be considered together with customer's level of expectation formed prior to reading online reviews, which resulted from extensive search and screening processes that the customer went through before reading online reviews.

Reviews of Picture Books : A Content Analysis (서평전문지에 나타난 그림책 서평 분석 연구)

  • Shim, Hyang Boon;Hyun, Eun Ja
    • Korean Journal of Child Studies
    • /
    • v.26 no.1
    • /
    • pp.203-216
    • /
    • 2005
  • Many picture books are published every year. Book reviews can play an important role in building knowledge about newly published book. This study analyzed data the coverage and content of reviews in journals with a view to helping librarians and parents become more aware of content and coverage of reviews for picture books. Variations of bibliographic and ordering information appeared among all journals. Most reviews typically included a plot summary and a general statement about the illustrations. Overall, journals provided more comments on literary elements than artistic elements. However, reviews provided insufficient information about the background of reviewers. Physical description of the books appeared in 8.81 % of the sample.

  • PDF