Competition among cities has become fierce with decentralization and globalization, and each city tries to establish a brand image of the city to build its competitiveness and implement its policies based on it. At this time, surveys, expert interviews, etc. are commonly used to establish city brands. These methods are difficult to establish as sampling methods an empirical component, the biggest component of a city brand. In this paper, therefore, based on the precedent research's urban brand measurement and components, the words representing each city image property were extracted and relocated to five indicators to form the evaluation index. The constructed indicators have been validated through the review of three experts. Through the index, we analyzed the brands of four cities, Ulsan, Incheon, Yeosu, and Gyeongju, and identified the factors by using Topic Modeling and Word Cloud. This methodology is expected to reduce costs and monitor timely in identifying and analyzing urban brand images in the future.
Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.
웨어하우스나 다른 데이타베이스에 있는 데이터를 어떤 유용한 정보로 변환하는 기술은 데이터 탐사이다. 즉, 데이터 탐사는 데이터베이스의 많은 데이터에서 이전에는 몰랐던 정보를 추출하기 위해 일련의 적당한 질의들을 취하는 과정이다. 데이타 탐사 기술은 통계, 기계 이해(machine learning), 데이타베이스 관리, 병렬처리 (preallel processing)등을 포함한 다양한 기술들의 혼합이다. 본 연구에서는 데이터 탐사에서 기인될 보안 위협, 이런 위협을 처리하기 위한 기법, 보안 문제점을 처리할 도구로서 데이터 탐사의 이용 등을 알아볼 것이다.
본 고에서는 인터넷 쇼핑몰 기업들 중 신생기업들을 대상으로 이들의 기업환경에 맞는 데이터베이스 마케팅 방법론을 제시하고자 한다. 그러므로 데이터마이닝(Data Mining)을 이용하여 기존고객을 세분화한 다음 고객 개개인의 특성에 맞는 마케팅을 프로모션(Promotion)하고 신규고객을 획득할 때는 신규고객의 특성을 미리 예측하여 고객의 평생가치(LTV:Life Value)를 촉진하여 기업과 고객과의 관계성을 높이고, 기업은 안정된 고객층으로부터 수익을 창출하고, 기업으로부터 더 많은 혜택을 받게 하는 것에 대하여 연구하였다.
Proceedings of the Korean Institute of Building Construction Conference
/
2022.04a
/
pp.214-215
/
2022
This study analyzed the development stage and change management necessity of the construction IT system through existing research and literature review, and used WordCloud, one of the text mining techniques, to analyze current construction trends and major issues. The necessity of change management is derived by using existing research literature and construction-related social issues as analysis data.
Individuals gather information online to resolve problems in their daily lives and make various decisions about the purchase of products or services. With the revolutionary development of information technology, Web 2.0 has allowed more people to easily generate and use online reviews such that the volume of information is rapidly increasing, and the usefulness and significance of analyzing the unstructured data have also increased. This paper presents an analysis on the lexical features of expert product reviews to determine their influence on consumers' purchasing decisions. The focus was on how unstructured data can be organized and used in diverse contexts through text mining. In addition, diverse lexical features of expert reviews of contents provided by a third-party review site were extracted and defined. Expert reviews are defined as evaluations by people who have expert knowledge about specific products or services in newspapers or magazines; this type of review is also called a critic review. Consumers who purchased products before the widespread use of the Internet were able to access expert reviews through newspapers or magazines; thus, they were not able to access many of them. Recently, however, major media also now provide online services so that people can more easily and affordably access expert reviews compared to the past. The reason why diverse reviews from experts in several fields are important is that there is an information asymmetry where some information is not shared among consumers and sellers. The information asymmetry can be resolved with information provided by third parties with expertise to consumers. Then, consumers can read expert reviews and make purchasing decisions by considering the abundant information on products or services. Therefore, expert reviews play an important role in consumers' purchasing decisions and the performance of companies across diverse industries. If the influence of qualitative data such as reviews or assessment after the purchase of products can be separately identified from the quantitative data resources, such as the actual quality of products or price, it is possible to identify which aspects of product reviews hamper or promote product sales. Previous studies have focused on the characteristics of the experts themselves, such as the expertise and credibility of sources regarding expert reviews; however, these studies did not suggest the influence of the linguistic features of experts' product reviews on consumers' overall evaluation. However, this study focused on experts' recommendations and evaluations to reveal the lexical features of expert reviews and whether such features influence consumers' overall evaluations and purchasing decisions. Real expert product reviews were analyzed based on the suggested methodology, and five lexical features of expert reviews were ultimately determined. Specifically, the "review depth" (i.e., degree of detail of the expert's product analysis), and "lack of assurance" (i.e., degree of confidence that the expert has in the evaluation) have statistically significant effects on consumers' product evaluations. In contrast, the "positive polarity" (i.e., the degree of positivity of an expert's evaluations) has an insignificant effect, while the "negative polarity" (i.e., the degree of negativity of an expert's evaluations) has a significant negative effect on consumers' product evaluations. Finally, the "social orientation" (i.e., the degree of how many social expressions experts include in their reviews) does not have a significant effect on consumers' product evaluations. In summary, the lexical properties of the product reviews were defined according to each relevant factor. Then, the influence of each linguistic factor of expert reviews on the consumers' final evaluations was tested. In addition, a test was performed on whether each linguistic factor influencing consumers' product evaluations differs depending on the lexical features. The results of these analyses should provide guidelines on how individuals process massive volumes of unstructured data depending on lexical features in various contexts and how companies can use this mechanism from their perspective. This paper provides several theoretical and practical contributions, such as the proposal of a new methodology and its application to real data.
This paper object is application of electronic Customers Relationship Management(e-CRM) for buyer relationship commitment in korea export firms. So, I'd like to suggest some applications of e-CRM needed to strengthen the export firms in korea. These applications are as follows First, the export companies are required to e-CRM logical architecture that is needs to achievement of buyer relationship commitment. Second, Buyer data source is classify in to three large group by outside data, transaction data and support data. Third, a concept and function of buyer information database. Fourth, e-CRM campaign management for export marketing. Fifth, interaction of buyer and customizing. finally, a point to be considered of korea export companies are national character, data mining out of buyer information database, difference of data gathering and sustaining up date of buyer's new information.
This paper object is application of electronic Customers Relationship Management(e-CRM) for buyer relationship commitment in korea export firms. So, I'd like to suggest some applications of e-CRM needed to strengthen the export firms in korea. These applications are as follows First, the export companies are required to e-CRM logical architecture that is needs to achievement of buyer relationship commitment. Second, Buyer data source is classify in to three large group by outside data, transaction data and support data. Third, a concept and function of buyer information database. Fourth, e-CRM campaign management for export marketing. Fifth, interaction of buyer and customizing. finally, a point to be considered of korea export companies are national character, data mining out of buyer information database, difference of data gathering and sustaining up date of buyer's new information.
Recent research trend of North Korean mining and rock engineering in the past 10 years was analyzed by a literature review of mining and rock engineering papers published in North Korean major mining journals, 'mining engineering', 'geological and geographical science' and 'technology innovation' published in 2008-2017. Basic database was established by organizing bibliographic information and abstract data of research papers in each journal. For each journal, paper submission trend classified by research field was analyzed using the basic database. And further study was conducted to the papers which showed distinguishing methodology and result, to analyze the trend of North Korean mining and rock engineering. The literature study showed a recent trend of quantification and automation in mining and rock engineering researches in North Korea, which seems due to recent changes in North Korea's science and technology policy and deterioration of the mining conditions. The results of this study can be applied in the feasibility studies of North Korea's mineral resource development projects. Future inter-Korean technical cooperation and site survey on North Korean field can secure complement the reliability of this study.
Recommender systems are popular applications that help users to identify items that they could be interested in. A recent research area on recommender systems focuses on detecting several kinds of inconsistencies associated with the user preferences. However, the majority of previous works in this direction just process anomalies that are intentionally introduced by users. In contrast, this paper is centered on finding the way to remove non-malicious anomalies, specifically in collaborative filtering systems. A review of the state-of-the-art in this field shows that no previous work has been carried out for recommendation systems and general data mining scenarios, to exactly perform this preprocessing task. More specifically, in this paper we propose a method that is based on the extraction of knowledge from the dataset in the form of rating regularities (similar to frequent patterns), and their use in order to remove anomalous preferences provided by users. Experiments show that the application of the procedure as a preprocessing step improves the performance of a data-mining task associated with the recommendation and also effectively detects the anomalous preferences.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.