• Title/Summary/Keyword: Reversible Flow

Search Result 73, Processing Time 0.026 seconds

Flow diversion of a middle cerebral artery pseudoaneurysm secondary to a gunshot wound: A case report

  • Justin C. Gelman;Max Shutran;Michael Young;Philipp Taussky;Rafael A. Vega;Rocco Armonda;Christopher S. Ogilvy
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.25 no.4
    • /
    • pp.434-439
    • /
    • 2023
  • Pseudoaneurysms are rare but devastating complications of penetrating head traumas. They require rapid surgical or endovascular intervention due to their high risk of rupture; however, complex presentations may limit treatment options. Our objective is to report a case of severe vasospasm, flow diversion, and in-stent stenosis complicating the treatment of a middle cerebral artery pseudoaneurysm following a gunshot wound. A 33-year-old woman presented with multiple calvarial and bullet fragments within the right frontotemporal lobes and a large right frontotemporal intraparenchymal hemorrhage with significant cerebral edema. She underwent an emergent right hemicraniectomy for decompression, removal of bullet fragments, and evacuation of hemorrhage. Once stable enough for diagnostic cerebral angiography, she was found to have an M1 pseudoaneurysm with severe vasospasm that precluded endovascular treatment until the vasospasm resolved. The pseudoaneurysm was treated with flow diversion and in-stent stenosis was found at 4-month follow-up angiography that resolved by 8 months post-embolization. We report the successful flow diversion of an middle cerebral artery (MCA) pseudoaneurysm complicated by severe vasospasm and later in-stent stenosis. The presence of asymptomatic stenosis is believed to be reversible intimal hyperplasia and a normal aspect of endothelial healing. We suggest careful observation and dual-antiplatelet therapy as a justified approach.

Effect of Reversible Air-circulation Fans on Air Uniformity in a Cultivation Facility for Oyster Mushroom (느타리재배사 정역 제어 대류팬이 공기 균일도에 미치는 영향)

  • Yum, Sung Hyun;Kim, Si Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2021
  • It has been known that oyster mushrooms cultivated in facilities with thermal insulation have been strongly affected by inner environments. Forced air-circulation fans exert much direct influence on disturbing air inside the facility so the matter is of particular interest. This study is carried out to investigate the measured levels of air uniformity in a cultivation facility for oyster mushroom in the various cases that reversibly controlled air-circulation fans which drove the flow in the upward and reverse direction by turn and unidirectional fans by which the wind blew upwards only were operated from July 1 to 10. The actual survey for the selection of ongoing operation cases presented that farmers, even though there were some discrepancies, have made use of fans in a way that it paused for 5-30min after running for 5-15min by turn. The level of air uniformity in the case of adopting reversible fans revealed a slight difference of 1.4-1.8℃ (Temp.) and 7.8-8.7% (R.H.) under the condition of not using a cooler during the investigation period. By contrast, unidirectional fans showed a noticeable difference of 3.2-3.7℃ and 14.0-15.4%, which meant that air uniformity driven by reversible fans much more increased compared to that for unidirectional fans. Among the twenty operational applications considered for reversible fans, the circumstance that the wind blew upwards for 10-15min and ceased for 5-10min and blew again in the reverse direction for 10-15min in succession gave minor improvements at the level of air uniformity, but at present there was somewhat difficult to make decision on which cases were optimally best. It seems necessary that the effects of reversible fans on air uniformity as well as qualities of oyster mushrooms have to be appraised in the cultivation period and the flow visualization needs to be done to ascertain the performance of air mixture.

Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System (차량용 MR충격댐퍼의 동특성 해석)

  • Song, Hyun-Jeong;Woo, Da-Vid;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

Fouling mechanism and screening of backwash parameters: Seawater ultrafiltration case

  • Slimane, Fatma Zohra;Ellouze, Fatma;Amar, Nihel Ben
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.298-308
    • /
    • 2019
  • This work deals with the membrane fouling mode and the unclogging in seawater ultrafiltration process. The identification of the fouling mechanism by modeling the experimental flux decline was performed using both the classical models of Hermia and the combined models of Bolton. The results show that Bolton models did not bring more precise information than the Hermia's and the flux decline can be described by one of the four Hermia's models since the backwash interval is ${\leq}60$ min. An experimental screening study has been then conducted to choose among 5 parameters (backwash interval, duration, pulses and the flow-rate or injected hypochlorite concentration) those that are the most influential on the fouling and the net water production. It has emerged that fouling is mainly affected by the backwash interval; its prolongation from 30 to 60 min engenders an increase in the reversible fouling and a decrease in the irreversible fouling. This later is also significantly reduced when the hypochlorite concentration increases from 4.5 to 10 ppm. Moreover, the net water production significantly increases with increasing the filtration duration up to 60 min and decreases with decreasing the backwash duration and backwash flow-rate from 10 to 40 s and from 15 to ${\geq}20L.min^{-1}$, respectively.

Channel Electrode Voltammetric and In Situ Electrochemical ESR Studies of Comproportionation of Methyl Viologen in Acetonitrile

  • Lee, Ji U;John C. Eklund;Robert A. W. Dryfe;Richard G. Compton
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 1996
  • Two redox processes of methyl viologen (+2/+, +/0) in acetonitrile were investigated by using channel electrode voltammetric and in situ electrochemical ESR methods. Two separated unequal plateau currents of the first (+2/+) and second (+/0) redox processes of the viologen were observed in the channel electrode voltammograms and showed a cube-root depedndence on the electrolyte flow rate, respectively. The simple Levich analysis resulted in two different diffusion coefficients of $D_{+2}=2.2{\times}10^{-5}\;cm^2/s$ and $D_+=3.0{\times}10^{-5}cm^2/s$ from the limiting currents. In situ electrochemical ESR studies were performed for the monocation radicals generated at the potentials of the two plateau currents in the electrolyte flow range $1.3{\times}10^{-1}{\geq}v_f{\geq}2.7{\times}10^{-3}\;cm^3/s$. Backward implicitfinite difference method was employed to simulate the electrochemical kinetic problem of two sequential electron transfers ($MV^{+2}+e{\leftrightarrows}MV^+,\;MV^{+}+e{\leftrightarrows}MV^0$) coupled with reversible comproportionation ($MV^{2+}+MV^0{{\leftrightarrows}^{k_f}_{k_b}}2MV^+$). $k_f$ was found to be greater than ($10^6M^{-1}s^{-1}.

Advances in modelling the mechanisms and rheology of electrorheological fluids

  • See, Howard
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.169-195
    • /
    • 1999
  • An electrorheological fluid (ERF) is typically a suspension of semi-conducting solid particles dispersed in an insulating carrier fluid, and shows a dramatic change in rheological properties when an external electric field is applied. This rapid and reversible change in flow properties has potential application in many electronically controlled mechanical devices, but the development of efficient devices and optimal materials for ERF is still hindered by incomplete understanding of the fundamental physical mechanisms involved. In recent years there have been considerable advances In relating microstructural models to the rheological behaviour, and these will form the basis of this review. Results of the theoretical calculations and simulations will be compared to the key experimental evidence available. An overview of the fundamental physical concepts behind electrorheological fluid behaviour will also be presented.

  • PDF

A Study on the Mechanism of Clusters Formation of ER Fluids (ER유체의 클러스터 형성 메커니즘에 관한 연구)

  • Rhee Eun-Jun.;Park Myeong-Kwan.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.503-506
    • /
    • 2002
  • Electrorheological fluids(ERFs) show a rapid and reversible increase in viscosity by applied electric field. It is called the electrorheological effect (ER effect). The reason for ER effect is the induction of an electric dipole in each particle, leading to the formation of clusters in the direction of the field, which resist fluid flow. Generally, the behavior of ER fluids has been modeled on those of Bingham fluids. But there are some differences between Bingham fluids and ER fluids. The visualization of ER fliuds are presented and ER effects by the forming, growing and breaking of clusters are discussed. In the low shear rate area, the pressure drop is measured by a pressure sensor and the formation of ER particles is visualized by video camera. The reason for the nonlinear behavior of ER fluids at low shear rate is explained through results of visualization.

  • PDF

Assessment of Myocardial Viability Using PET (PET을 이용한 심근생존능의 평가)

  • Yoon, Seok-Nam
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • The potential for recovery of left ventricular dysfunction after myocardial revascularization represents a practical clinical definition for myocardial viability. The evaluation of viable myocardium in patients with severe global left ventricular dysfunction due to coronary artery disease and with regional dysfunction after acute myocardial infarction is an important issue whether left ventricular dysfunction may be reversible or irreversible after therapy. If the dysfunction is due to stunning or hibernation, functional improvement is observed. but stunned myocardium may recover of dysfunction with no revascularization. Hibernation is chronic process due to chronic reduction in the resting myocardial blood flow. There are two types of myocardial hibernation: "functional hibernation" with preserved contractile reserve and "structural hibernation" without contractile reserve in segments with preserved glucose metabolism. This review focus on the application of F-18 FDG and other radionuclides to evaluate myocardial viability. In addition the factors influencing predictive value of FDG imaging for evaluating viability and the different criteria for viability are also reviewed.