• Title/Summary/Keyword: Reverse-osmosis

Search Result 418, Processing Time 0.024 seconds

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

Evaluation of Seawater Reverse Osmosis Desalination System with UF and Disk Filter as Pre-Treatment (UF와 디스크필터를 전처리시설로 이용한 역삼투압해수담수설비의 평가)

  • Yang, Keun-Mo;Lim, Dong-Hoon;Kim, Joon Ha;Jung, Hyung-Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • In the present study, sea water reverse osmosis desalination system was composed with an ultra-filtration membrane as a pre-treatment. Sea water was induced into the pre-treatment composed with an auto-screen filter and an ultra-filtration membrane. It was proved that the permeate of the pre-treatment was adequate for reverse osmosis desalination system by measuring the $SDI_{15}$ and the turbidity. Feed salinities was changed by mixing the brine and the permeate. Inlet salinities effected the performances of sea water reverse osmosis desalination system in a large amount such as the salt rejection, the recovery ratio, the pressure, the product salinity. Energy consumptions per the ton of the product were almost linearly increased with the inlet salinities.

A Study on the Removal Effect of Bacteria and E. Coli. by Water Treatment Processes using Activated Carbon and Membrane (정수처리공정에 따른 일반세균과 대장균군의 제거에 관한 연구)

  • 조태석;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 1997
  • This study has been designed to check the removal effect of contaminated water by various water treatmemt processes using sediment filter, activated carbon, reverse osmosis membrane, ultra vilolet sterilizer and ultra filtration and then to analyze the change of pH, the concentration of chlorides, bacteria and E. coli. after 24 hours. pH has increased as much as 0.15-0.32 by activated carbon but decreased sharply by reverse osmosis treatment after 24 hours. The removal effect of chloride was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon. Ultra filtration process was effective for purify agricultural water containg bacteria and E.coli.

  • PDF

Studies on the Polymeric Membranes for Separation(IV) Preparation and Properties of Cellulose Acetaste Membranes for Reverse Osmosis (고분자분리막에 관한 연구(IV) 역삼투용 Cellulose Acetate막의 제조 및 특성)

  • 윤규식;김종호;탁태문
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.117-125
    • /
    • 1993
  • The CA reverse osmosis membranes were prepared and were studied the effects of parameters in membrane performance. The dope solutions were composed of polymer, formamide, acetone and 2-methoxyethanol. And it was prepared flat type membranes. The membranes were measured flux and rejection. The experimental factors such as polymer concentration, additive type, solvent evporation period, annealing temperture, and applied pressure were changed to investigate the effects of these on the membranes. And the transport parameters were also calculated at reverse osmosis medel for prepared membranes.

  • PDF

Recent Progress of Membrane Technology and its New Application for Water Treatment

  • Hiroyuki, Yamamura;Yoshinari, Fusaoka;Masaru, Kurihara
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.81-94
    • /
    • 1998
  • Nowadays, membrane separation such as reverse osmosis (RO) and ultrafiltration (UF) play an important role in the industrial separation technology. Among desalination technologies available today, reverse osmosis is usually the most economical process for wide range of water salinity. Main applications include production of high purity water, desalination of seawater and brackish water for a drinking water supply, treatment of waste water for environmental protection, and recovery of precious materials from industrial waste water. In this paper, we will mention membrane performance and these practical use focused on reverse osmosis membranes and ultrafiltration membranes recently developed by Toray.

  • PDF

The Change of Properties of reverse Osmosis Thin Film Composite Membrane according to Preparation Conditions (계면중합조건에 따른 복합막의 물성 변화)

  • Lee, Dong-Jin;Min, Byung-Ryul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.276-285
    • /
    • 1997
  • The theoretical and experimental analysis on polyamide used for reverse osmosis thin-film composite membrane had been conducted. The physicochemical properties of polyamide had been varied by preparation recipes which depends on kinds of monomer, solvents and polymerization time. These properties and performance as a reverse osmosis membrane had been calculated by group contribution method. The experimental results has the same trends with theoretical preview.

  • PDF

A Survey of water pollution and the development of water treatment system on agricultural Area (농어촌의 수질오염과 수질특성에 적합한 정수 처리시스템의 개발에 관한 연구(1))

  • 정문호;김영규;조태석;배현주;신명옥;김수연;김민지;김민영;김수복
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.65-74
    • /
    • 1997
  • The purpose of this study was to investigate the removal effect and variation of contaminated water by various water treatment processes using sediment filter, activated carbon, photocatalysis, reverse osmosis, ultra violet sterilizer and ultra filtration. The removal effect of chloride and trace metal was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon but high in impregnated activated carbon. The removal effect of TCE was low in sand and ultra filter system as compared with activated carbon. Ultra filtration process was effective for purify agricultural water without E.coli. Reverse osmosis was effective to remove heavy metal and activated carbon was effective to remove halogenated organic chemical compound. The flux and the removal effect of COD in spiral wound ultrafilter were higher than the hollow fiber ultrafilter.

  • PDF

Energy Recovery Technologies for Seawater Reverse Osmosis Desalination Systems : A Review (역삼투 방식의 해수담수화 플랜트 에너지 회수 기술)

  • Kim, Yeong-Min;Lee, Won-Tae;Choi, June-Seok;Kang, Man-Gon;Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.573-579
    • /
    • 2011
  • As rapid advances in technologies continue, seawater reverse osmosis (SWRO) desalination systems are now more energy-efficient than conventional thermal processes. Some SWRO desalination plants can achieve the specific energy consumption (SEC) below 2 kWh/$m^3$. Along with the development of new membranes and high-performance pumps, energy recovery devices (ERD), which recover the hydraulic energy of brine, have been developed to enhance energy efficiency. In this work, we reviewed general aspects of ERD technologies and their market trends. The advantages and disadvantages of various EDR technologies were compared to explore the future directions of ERD development.

Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater

  • Srisukphun, Thirdpong;Chiemchaisri, Chart;Chiemchaisri, Wilai;Thanuttamavong, Monthon
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • Membrane bioreactor (MBR) and reverse osmosis (RO) membrane system was applied to the treatment and reclamation of textile wastewater in Thailand. An experiment was carried out to determine the fouling behavior and effect of anti-scalant and biocide addition to flux decline and its recovery through chemical cleaning. The RO unit was operated for one month after which the fouled membranes were cleaned by sequential chemical cleaning method. RO flux was found rapidly declined during initial period and only slightly decreased further in long-term operation. The main foulants were organic compounds and thus sequential cleaning using alkaline solution followed by acid solution was found to be the most effective method. The provision of anti-scalant and biocide in feed-water could not prevent deposition of foulant on the membrane surface but helped improving the membrane cleaning efficiencies.

Scaling predictions in seawater reverse osmosis desalination

  • Hchaichi, Houda;Siwar, Saanoun;Elfil, Hamza;Hannachi, Ahmed
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.221-233
    • /
    • 2014
  • Simulations were conducted to predict supersaturation along Reverse Osmosis (RO) modules for seawater desalination. The modeling approach is based on the use of conservation principles and chemical equilibria equations along RO modules. Full Pitzer ion interactive forces model for concentrated solutions was implement to calculate activity coefficients. An average rejection rate for all ionic species was considered. Supersaturation has been used to assess scaling. Supersaturations with respect to all calcium carbonate forms and calcium sulfate were calculated up to 50% recovery rate in seawater RO desalination. The results for four different seawater qualities are shown. The predictions were in a good agreement with the experimental results.