• Title/Summary/Keyword: Reverse mutation assay

Search Result 59, Processing Time 0.026 seconds

Single-Dose Oral Toxicity in Rat and Bacterial Reverse Mutation Assay of Psoralea corylifolia L. Extracts (파고지 추출물의 렛트에 대한 단회 경구 투여 독성 및 복귀돌연변이능 평가)

  • Kim, Sun-A;Lim, Sun-Hye;Ahn, Ji-Yun;Kim, Sung-Ran;Ha, Tae-Youl
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.960-964
    • /
    • 2007
  • This study was performed to examine the toxicity of Psoralea corylifolia L. by the single-dose oral toxicity tests in rat and bacterial reverse mutation assay. In single-dose oral toxicity tests, 5 mL ethanol extract of P. corylifolia L. were directly injected into 10 rats (5 males and 5 females) at a dosage of 2 g/kg. Death practice was not detected during breeding periods (14 days), and $LD_{50}$ was calculated over 2 g/kg. No difference were observed with control group in the growth rate and histological observations. In bacterial reverse mutation assay, his(-) Salmonella Typhimurium TA98, TA100, TA1535, TA1537 and trp(-) Escherichia coli WP2uvrA (pKM101) were used for assessing the toxicity of ethanol extracts of P. corylifolia L.. No significant difference in formation of the colonies and no dose-dependent increase was observed regardless of the addition of S9 mix. The results showed that ethanol extracts of P. corylifolia L. did not have single-dose oral toxicity and mutagenic toxicity.

Safety Evaluation of Korean Mistletoe Extract (한국산 겨우살이 추출물의 안전성 평가)

  • Kim, Inbo;Jeong, Ju-Seong;Yoon, Taek Joon;Kim, Jong Bae
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.383-390
    • /
    • 2013
  • Mistlero C was shown to be non-genotoxic in a series of genotoxicity tests, including a bacterial reverse mutation test and a combined in vivo mammalian erythrocyte micronucleus test. In a bacterial reverse mutation assay, no significant increases in the number of revertant colonies, compared to the negative control, was detected in $5,000{\mu}g/plate$ of Mistlero C. In addition, with Mistlero C, no changes were shown in the number of micronucleated polychromatic erythrocytes (MNPCE) among 2,000 polychromatic erythrocytes compared to the negative control. Mistlero C was administered orally in rats to investigate acute toxicity. The $LD_{50}$ values in rats were above 2,000 mg/kg. In a repeated dose, 13-week, oral toxicity study conducted in rats, no compound-related adverse effects were shown at doses of Mistlero C of up to 1,000 mg/kg body weight/day. The results of these studies support the safe use of Mistlero C in food for human consumption.

Genotoxicity Assessment of Erythritol by Using Short-term Assay

  • Chung, Young-Shin;Lee, Michael
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Erythritol is a sugar alcohol that is widely used as a natural sugar substitute. Thus, the safety of its usage is very important. In the present study, short-term genotoxicity assays were conducted to evaluate the potential genotoxic effects of erythritol. According to the OECD test guidelines, the maximum test dose was 5,000 ${\mu}g$/plate in bacterial reverse mutation tests, 5,000 ${\mu}g/ml$ in cell-based assays, and 5,000 mg/kg for in vivo testing. An Ames test did not reveal any positive results. No clastogenicity was observed in a chromosomal aberration test with CHL cells or an in vitro micronucleus test with L5178Y $tk^{+/-}$ cells. Erythritol induced a marginal increase of DNA damage at two high doses by 24 hr of exposure in a comet assay using L5178Y $tk^{+/-}$ cells. Additionally, in vivo micronucleus tests clearly demonstrated that oral administration of erythritol did not induce micronuclei formation of the bone marrow cells of male ICR mice. Taken together, our results indicate that erythritol is not mutagenic to bacterial cells and does not cause chromosomal damage in mammalian cells either in vitro or in vivo.

Detection of embB Gene Mutation of Mycobacterium tuberculosis by Reverse Hybridization Assay (역교잡 방법을 이용한 결핵균 embB 유전자 돌연변이 검출)

  • Park, Young Kil;Yu, Hee Kyung;Park, Chan Hong;Ryu, Sung Weon;Lee, Seung Heon;Shim, Myung Sup;Lew, Woo Jin;Koh, Won-Jung;Kwon, O Jung;Cho, Sang Nae;Bai, Gill Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.129-134
    • /
    • 2005
  • Background : Ethambutol (EMB) is one of important first-line drug in the treatment of tuberculosis. Molecular techniques to detect embB gene mutations have been considered as an method to define the EMB resistance. We investigated the mutation rate within embB gene among EMB resistant strains using reverse hybridization techniques. Methods : We made 11 probes that had wild or mutated sequences containing codons 306, 406, or 497 within embB gene respectively. These probes were reverse-hybridized with PCR products amplified from embB gene which were isolated from 149 ethambutol resistant strains and 50 pan-susceptible strains. Results : Out of 149 ethambutol resistant strains, one hundred (67.1%) had mutation at least one base at codon 306, 406, or 497 in embB gene. Mutation at codon 306, 406, 497 were demonstrated in 75 (50.3%), 16 (10.7%), and 13 strains (8.7%) respectively. There were four strains that showed multi-mutation at codon 306 and codon 406 simultaneously. A high proportion (8.1%) had single mutation at codon 406. There was no mutation observed in embB gene among 50 pan-susceptible strains. Conclusion : Reverse hybridization will be useful technique for detection of gene mutation correlated to ethambutol resistance.

Genotoxicological Safety Evaluation of Crude Antifungal Compounds Produced by Bacillus subtilis SN7 (Bacillus subtilis SN7이 생성한 조항균 물질의 유전독성학적 안정성평가)

  • Chang, Hae-Choon;Koh, Sang-Bum;Lee, Jae-Joon
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.1
    • /
    • pp.131-141
    • /
    • 2017
  • This study was carried out to perform genotoxicological safety evaluation of crude antifungal compounds produced by Bacillus subtilis SN7 (B. subtilis SN7) isolated from meju. Bacterial reverse mutation assay with Salmonella typhimurium TA98, TA100, TA1535, and TA1537 or Escherichia coli WP2uvrA in the presence and absence of the S9 metabolic activation system was carried out, and the crude antifungal compounds produced by B. subtilis SN7 showed no significant increase in the number of revertant colonies. In the chromosomal aberration tests using Chinese hamster lung (CHL) cells, sample treatment groups showed no increase in the frequency of chromosome aberrations compared to the negative control group. Furthermore, in the micronucleus formation test, the crude antifungal compounds showed no significance increase in the frequency of polychromatic erythrocytes with micronuclei. These results suggest that the crude antifungal compounds produced by B. subtilis SN7 isolated from meju showed no harmful genotoxic effects.

Safety of Nano-sized Bee Pollen in both In-vitro and In-vivo Models (생체 외 및 생체 내 실험조건에서 나노화 벌 화분의 안전성 규명)

  • Pyeon, Hae-In;So, Soojeong;Bak, Jia;Lee, Seunghyun;Lee, Seungmin;Suh, Hwa-Jin;Lim, Je-Oh;Kim, Jung-Woo;Kim, Sun Youn;Lee, Se Ra;Lee, Yong Hyun;Chung, Il Kyung;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.605-614
    • /
    • 2018
  • Bee pollen has an outer wall which is resistant to both acidic and basic solutions and even the digestive enzymes in the gastrointestinal tract. Therefore, the oral bioavailability of bee pollen is only 10-15%. A previous study reported on wet-grinding technology which increased the extraction of active ingredients from bee pollen by 11 times. This study was designed to investigate the safety of wet-ground bee pollen. First, a single dose of wet-ground bee pollen was tested in both rats and beagle dogs at dosages of 5, 10, and 20 g/kg and 1.5, 3, and 6 g/kg, respectively. In rats, compound-colored stools were found in those administered 10 g/kg or more of wet-ground bee pollen. In beagle dogs, 6 g/kg of wet-ground bee pollen induced diarrhea in one male for four hours. However, no obvious clinical signs were found through the end of the experiment in rats and beagle dogs. In addition, no histological abnormality was found in all animals. The data indicates that a single dose of up to 20 g/kg of wet-ground bee pollen is safe. Next, the genetic toxicity of nano-sized bee pollen was tested. This study employed a bacterial reverse mutation test, a micronucleus assay, and a chromosomal aberration assay. In the micronucleus assay, there was no genetic toxicity up to the dosage of 2 g/kg. There was also no genetic toxicity in the bacterial reverse mutation test and chromosomal aberration assay. This data provides important information in developing nano-sized bee pollen into more advanced functional foods and herbal medicines.

Evaluation of Reverse Hybridization Assay for Detecting Fluoroquinolone and Kanamycin Resistance in Multidrug-Resistance Mycobacterium tuberculosis Clinical Isolates (다제내성결핵 균주에서 Reverse Hybridization Assay를 이용한 Fluoroquinolone, Kanamycin 신속 내성 검사의 유용성)

  • Park, Chin-Su;Sung, Nack-Moon;Hwang, Soo-Hee;Jeon, Jae-Hyun;Won, Young-Sub;Min, Jin-Hong;Kim, Cheon-Tae;Kang, Hyung-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • Background: Multidrug-resistant tuberculosis (MDR-TB) is an increasing public health problem and poses a serious threat to global TB control. Fluoroquinolone (FQ) and aminoglycoside (AG) are essential anti-TB drugs for MDR-TB treatment. REBA MTB-FQ$^{(R)}$ and REBA MTB-KM$^{(R)}$ (M&D, Wonju, Korea) were evaluated for rapid detection of FQ and kanamycin (KM) resistance in MDR-TB clinical isolates. Methods: M. tuberculosis (n=67) were isolated and cultured from the sputum samples of MDR-TB patients for extracting DNA of the bacilli. Mutations in genes, gyrA and rrs, that have been known to be associated with resistance to FQ and KM were analyzed using both REBA MTB-FQ$^{(R)}$ and REBA MTB-KM$^{(R)}$, respectively. The isolates were also utilized for a conventional phenotypic drug susceptibility test (DST) as the gold standard of FQ and KM resistance. The molecular and phenotypic DST results were compared. Results: Sensitivity and specificity of REBA MTB-FQ$^{(R)}$ were 77 and 100%, respectively. Positive predictive value and negative predictive value of the assay were 100 and 95%, respectively, for FQ resistance. Sensitivity, specificity, positive predictive value and negative predictive value of REBA MTB-KM$^{(R)}$ for detecting KM resistance were 66%, 94%, 70%, and 95%, respectively. Conclusion: REBA MTB-FQ$^{(R)}$ and REBA MTB-KM$^{(R)}$ evaluated in this study showed excellent specificities as 100 and 94%, respectively. However, sensitivities of the assays were low. It is essential to increase sensitivity of the rapid drug resistance assays for appropriate MDR-TB treatment, suggesting further investigation to detect new or other mutation sites of the associated genes in M. tuberculosis is required.

Mutagenicity Study of Purified Bee Venom (Apis mellifera L.) by the Bacterial Reverse Mutation Assay (세균을 이용한 정제봉독의 복귀돌연변이시험)

  • Han, Sang Mi;Hong, In Phyo;Woo, Soon Ok;Kim, Se Gun;Jang, Hye Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.228-233
    • /
    • 2017
  • The aim of the current study was to examine genotoxicological safety of purified bee venom (Apis mellifera L.) The bacterial reverse mutation in Salmonella typhimurium (TA100, TA1535, TA98, and TA1537) and Escherichia coli (WP2 uvrA) were evaluated with purified bee venom at concentrations of 0, 1.5, 5, 15, 50, 150, and $500{\mu}g/plate$. Purified bee venom was negative in Ames test with both in the presence and absence of rat liver microsomal enzyme. According to these results, we concluded that purified bee venom did not cause bacterial reverse mutation. The safety of the purified bee venom at practical doses needs to be further evaluated in in vivo genotoxicity assays.

Analysis of rpoB Gene in Rifampin-Resistant M. Tuberculosis by Direct Sequencing and Line Probe Assay (염기서열결정과 Line Probe 분석법에 의한 Rifampin내성 결핵균의 rpoB 유전자 분석)

  • Lee, Min-Ki;Kim, Yun-Seong;Lee, Hyo-Jin;Cheon, Du-Su;Yun, Sang-Myung;Park, Sam-Seok;Kim, Cheol-Min;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.251-263
    • /
    • 1997
  • Background : The emergence of multidrug-resistant strains of Mycobacterium tuberculosis presents a significant challange to the treatment and control of tuberculosis, and there is an urgent need to understand the mechanisms by which strains acquire multidrug resistance. Recent advances in molecular methods for the detection of M. tuberculosis genetic targets have approached the sensitivity of culture. Furthermore the prospect of determining resistance in mycobacteria at the nucleic acid level particulary to first-line drugs like rifampin, isoniazid has provided a glimps of the next generation of sensitivity test for M. tuberculosis. Previous studies in RMP resistant M. tuberculosis have shown that mutation in $\beta$subunit of RNA polymerase is main mechanism of resistance. Method : In this study, rpoB gene for the $\beta$subunit of RNA polymerase from M. tuberculosis of 42 cultured samples (32 were RMP resistant and 10 were sensitive cases) were isolated and characterised the mutations. Direct sequencing data were compared with the results of INNO-LiPA Line Probe Assay (LiPA, Innogenetics, Belgium), commercial RMP resistance detecting kit using reverse hybridization method. Results : All of the RMP resistant samples were revealed the presence of mutation by LiPA. In 22 samples (68.8%) out of 32 RMP resistant cases, the mutation types were confirmed by the positive signal at one of 4 mutation bands in the strip. The most frequent type was R5 (S531L) which were 17 cases (77.3%). Results of direct sequencing were identified the exact characteristics of 8 mutations which were not confirmed by LiPA. S522W type point mutation and 9 base pair deletion at codon 513~515 were new identified mutations for the first time. Conclusion : Mutations in rpoB gene is the main mechanism of RMP resistance in M. tuberculosis and LiPA is a very useful diagnostic tool for the early diagnosis of RMP resistance in M. tuberculosis.

  • PDF

Genotoxicity Study of Sophoricoside, a Constituent of Sophora japonica, in Bacterial and Mammalian Cell System

  • Kim, Youn-Jung;Park, Hyo-Joung;Kim, Young-Soo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2001
  • Sophoricoside was isolated as the inhibitor of IL-5 bioactivity from Sophora japonica (Leguminosae). It has been reported to has an anti-inflammatory effect on rat paw edema model. To develope as an anti-allergic drug, genotoxicity of sophoricoside was investigated in bacterial and mammalian cell system such as Ames bacterial reversion test, chromosomal aberration assay and single cell gel electrophoresis (Comet) assay. As results, in the range of 1,250~40 $\mu\textrm{g}$/plate sophoricoside concentrations was not shown significant mutagenic effects in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains in Ames test. The 80% cell growth inhibition concentration (IC/SUB 80/) of sophoricoside was determined as above 5,000 $\mu\textrm{g}$/$m\ell$ in Chinese hamster lung (CHL) fibroblast cell and L5178Y mouse lymphoma cell line for the chromosomal aberration and comet assay, respectively. Sophoricoside was not induced chromosomal aberration in CHL fibroblast cell at concentrations of 700, 350 and 175 $\mu\textrm{g}$/$m\ell$ or 600, 300 and 150 $\mu\textrm{g}$/$m\ell$ in the absence or presence of S-9 metabolic activation system, respectively. Also, in the comet assay, the induction of DNA damage was not observed in L5178Y mouse lymphoma cell line both in the absence or presence of S-9 metabolic activation system. From these results, no genotoxic effects of sophoricoside were observed in bacterial and mammalian cell systems used in these experiments.

  • PDF