As today's business environment has become more and more competitive, forward as well as backward flows of products among members belonging to a supply chain have been increased. The backward flows of products, which are common in most industries, result from increasing amount of products that are returned, recalled, or need to be repaired. Effective management for the backward flows of products has become an important issue for businesses because of opportunities for simultaneously enhancing profitability and customer satisfaction from returned products. Since third party logistics service providers (3PLs) are playing an important role in reverse logistics operations, they should perform two simultaneous logistics operations for a number of different clients who want to improve their logistics operations for both forward and reverse flows. In this case, distribution networks have been independently designed with respect to either forward or backward flows so far. This paper proposes a mixed integer programming model for the design of network integrating both forward and reverse logistics. Since the network design problem belongs to a class of NP-hard problems, we present an efficient heuristic algorithm based on genetic algorithm (GA), of which the performance is compared to the lower bound by Lagrangian relaxation. Finally, the validity of proposed algorithm is tested using numerical examples.
As today's business environment has become more and more competitive, forward as well as backward flows of products among members belonging to a supply chain have been increased. The backward flows of products, which are common in most industries, result from increasing amount of products that are returned, recalled, or need to be repaired. Effective management for these backward flows of products has become an important issue for businesses because of opportunities for simultaneously enhancing profitability and customer satisfaction from returned products. Since third party logistics service providers (3PLs) are playing an important role in reverse logistics operations, the 3PLs should perform two simultaneous logistics operations for a number of different clients who want to improve their logistics operations for both forward and reverse flows. In this case, distribution networks have been independently designed with respect to either forward or backward flows so far. This paper proposes a mixed integer programming model for the design of network integrating both forward and reverse logistics. Since this network design problem belongs to a class of NP-hard problems, we present an efficient heuristic based on Lagrangean relaxation and apply it to numerical examples to test the validity of proposed heuristic.
Reverse logistics network design issues have been popularly discussed in recent years. However, few papers in the past literature have been dedicated to incentive effect on return quantity of used products. The purpose of this study is to formulate a dynamic nonlinear programming model of reverse logistics network design with the aim of managing the used products allocation by coordinating the collection centers and recovery facilities to warrant economic efficiency. In the optimization model, a fuzzy approach is applied to interpret the relationship between the rate of return and the suggested incentives. Due to funding constraints in setting up the collection centers, this work considers these centers as multi-capacity levels, which can be opened or closed at different periods. In view of the fact that the problem is known as NP-hard, we propose a heuristic method based on tabu search procedure to solve the presented model. Finally, several dominance properties of optimal solutions are demonstrated in comparison with the results of a state-of-the-art commercial solver.
Deployment of green transportation in reverse logistics is a key issue for low carbon technologies. To cope with such logistic innovation, this paper proposes a hybrid approach to solve practical vehicle routing problem (VRP) of pickup type that is common when considering the reverse logistics. Noticing that transportation cost depends not only on distance traveled but also on weight loaded, we propose a hierarchical procedure that can design an economically efficient reverse logistics network even when the scale of the problem becomes very large. Since environmental concerns are of growing importance in the reverse logistics field, we need to reveal some prospects that can reduce $CO_2$ emissions from the economically optimized VRP in the same framework. In order to cope with manifold circumstances, the above idea has been deployed by extending the Weber model to the generalized Weber model and to the case with an intermediate destination. Numerical experiments are carried out to validate the effectiveness of the proposed approach and to explore the prospects for future green reverse logistics.
Among various environmental issues, those for worn-out products are increasingly important due to rapid development and improvement of products, shortages of dumping sites and waste-incineration facilities, and legislation pressures and customer recognitions to protect the environment. Under such circumstances, collection and product recovery activities give rise to additional material flows from customers back to collectors and reprocessors. Reverse logistics, the opposite direction of the conventional forward logistics, is concerned with the management of this material flow. In this paper, we consider the emerging concept of reverse logistics. First, the concept of sustainable development is explained to explain the philosophical background of various environmental issues. Second, we explain the basics of reverse logistics, which includes the overall structure and the classification of network types. Finally, we review the previous research articles, especially in the aspect of industrial engineering, after classifying the decision problems into : (a) product recovery strategy; (b) network design and operation; (c) inventory management; (d) disassembly problems; and (e) remanufacturing problems.
We consider a reverse logistics network design problem for recycling. The problem consists of three stages of transportation. In the first stage products are transported from retrieval centers to disassembly centers. In the second stage disassembled modules are transported from disassembly centers to processing centers. Finally, in the third stage modules are transported from either processing centers or a supplier to a manufacturer, a recycling site, or a disposal site. The objective is to design a network which minimizes the total transportation cost. We design a cooperative coevolutionary algorithm to solve the problem. First, the problem is decomposed into three subproblems each of which corresponds to a stage of transportation. For subproblems 1 and 2, a population of chromosomes is constructed. Each chromosome in the population is coded as a permutation of integers and an algorithm which decodes a chromosome is suggested. For subproblem 3, an heuristic algorithm is utilized. Then, a performance evaluation procedure is suggested which combines the chromosomes from each of two populations and the heuristic algorithm for subproblem 3. An experiment was carried out using test problems. The experiments showed that the cooperative coevolutionary algorithm generally tends to show better performances than the previous genetic algorithm as the problem size gets larger.
Refuse collection, one of important elements in reverse logistics, is an activity rendering recyclables or wastes and moving them to some points where further treatment is required. Among various decisions in the collection activity, we focus on network design, which is the problem of locating collection points as well as allocating refuses at demand points to collection points while satisfying the capacity restriction at each collection point. Here, the collection point is the place where recyclables or wastes near the point are gathered, and locating the collection points is done by selecting them from a given set of potential sites. The objective is to minimize the sum of fixed costs to open collection points and transportation costs to move refuses from demand points to collection points. An integer programming model is developed to represent the problem mathematically and due to the complexity of the problem, two types of heuristics, one with simultaneous and the others with separate location and allocation, are suggested. Computational experiments were done on test problems up to 500 potential sites, and the results are reported. In particular, some heuristics gave near optimal solutions for small-size test problems, i.e., 2% gaps in average from the optimal solution values.
Expanded muti-source Weber problem (EWP), which introduced in this paper, is a reverse logistics network design problem to minimize the total transportation cost from customers thorough regional center to central center. Decision factor of EWP are the locations of regional centers and a central center. We introduce a GRASP heuristics for the EWP. In the suggested GRASP, an expanded iterative location allocation method (EILA) is introduced based on the Cooper's iterative location allocation method[3]. For the initial solution of GRASP, allocation first seed (AFSeed) and location first seed (LFSeed) are developed. The computational experiment for the objective value shows that the LFSeed is better than the AFSeed. Also the calculating time of the LFSeed is better than that of the AFSeed.
An effective management for reverse flows of products such as reuse, repair and disposal, has become an important issue for every aspect of business. In this paper, we study the Location-Routing Problem (LRP) in the multi-stage closed-loop supply chain network. The closed-loop supply chain in this study integrated both forward and reverse flows. In forward flow, a factory, Distribution Center (DC) and retailer are considered as usual. Additionally in reverse flow, we consider the Central Returns collection Center (CRC) and disposal facility. We propose a mixed integer programming model for the design of closed-loop supply chain integrating both forward and reverse flows. Since the LRP belongs to an NP-hard problem, we suggest a heuristic algorithm based on genetic algorithm. For some test problems, we found the optimal locations and routes by changing the numbers of retailers and facility candidates. Furthermore, we compare the efficiencies between open-loop and closed-loop supply chain networks. The results show that the closed-loop design is better than the open one in respect to the total routing distance and cost. This phenomenon enlarges the cut down effect on cost as an experimental space become larger.
Refuse collection network design, one of major decision problems in reverse logistics, is the problem of locating collection points and allocating refuses at demand points to the opened collection points. As an extension of the previous models, we consider capacity and maximum allowable distance constraints at each collection point. In particular, the maximum allowable distance constraint is additionally considered to avoid the impractical solutions in which collection points are located too closely. Also, the additional distance constraint represents the physical distance limit between collection and demand points. The objective is to minimize the sum of fixed costs to open collection points and variable costs to transport refuses from demand to collection points. After formulating the problem as an integer programming model, we suggest an optimal branch and bound algorithm that generates all feasible solutions by a simultaneous location and allocation method and curtails the dominated ones using the lower bounds developed using the relaxation technique. Also, due to the limited applications of the optimal algorithm, we suggest two heuristics. To test the performances of the algorithms, computational experiments were done on a number of test instances, and the results are reported.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.