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ABSTRACT 

Reverse logistics network design issues have been popularly discussed in recent years. However, few papers in the 
past literature have been dedicated to incentive effect on return quantity of used products. The purpose of this study is 
to formulate a dynamic nonlinear programming model of reverse logistics network design with the aim of managing 
the used products allocation by coordinating the collection centers and recovery facilities to warrant economic effi-
ciency. In the optimization model, a fuzzy approach is applied to interpret the relationship between the rate of return 
and the suggested incentives. Due to funding constraints in setting up the collection centers, this work considers these 
centers as multi-capacity levels, which can be opened or closed at different periods. In view of the fact that the prob-
lem is known as NP-hard, we propose a heuristic method based on tabu search procedure to solve the presented 
model. Finally, several dominance properties of optimal solutions are demonstrated in comparison with the results of a 
state-of-the-art commercial solver. 
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1.  INTRODUCTION 

In recent decades, various industrial sectors have 
been affected by the growth of environmental concerns, 
introduction of new regulations and the increase in the 
rate of return as a result of shortened product life cycle. 
Accordingly, with the intention of passing the obligatory 
regulations, the manufacturers have been compelled to 
retrieve and recover products that are at the end of their 
life cycle (see Ilgin and Gupta, 2010).  

Planning for the collection of used products is re-
lated to the reverse logistics network design, which in-

cludes not only selecting appropriate paths and vehicles 
for transporting goods but also determining the optimal 
locations and capacities for opening the collection and 
recovery centers. In this area, there are some challeng-
ing decisions to be made when various products and 
varying levels of quality are concerned. This is why a 
wide variety of mathematical optimization models have 
been published to deal with different situations in net-
work design, which usually considers different stages 
for reverse logistics networks. 

The literature addresses the collection of returned 
products in three ways: third-party logistics (Cruz-Rivera 
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and Ertel, 2009; de Figueiredo and Mayerle, 2008; Go-
vindan et al., 2012; Krikke et al., 2008; Min and Ko, 
2008), opening collection centers by the remanufacturer/ 
manufacturer (Aras and Aksen, 2008; Östlin et al., 2008; 
Pokharel and Liang, 2012; Tagaras and Zikopoulos, 2008), 
and the use of retailers (Choi et al., 2013; Lee et al., 
2011; Wojanowski et al., 2007). 

The majority of the used products do not have any 
value in terms of functionality (Schultmann et al., 2006); 
only a reasonable amount of profit is made when some 
of them are collected and recycled. Imposing penalties 
for non-collected, end-of-life (EOL) products or pollut-
ant limitations generated during the production process 
are samples of new approaches that have actively been 
pursued in the past decade. For example, in the Waste 
Electrical and Electronic Equipment (WEEE) directive, 
governments oblige manufacturers to take the responsi-
bility for the entire life cycle of their products. 

Generally, customers have no motivation to return 
their EOL products after use (Guide et al., 2003). Unfor-
tunately, there are few papers that have examined the 
effect of incentive price on the amount of returned prod-
ucts. The rate of return by the customers is related to the 
incentive price provided by the collectors, which is de-
termined by various factors, such as distance from the 
collection or recycling centers and scraps quality. A sig-
nificant contribution that the present research intends to 
make and sets it apart from the past researches is that it 
considers the price effect on the probability amount of 
returns, taking this fact into account that customers do 
not have an exact price in mind for selling their products. 
Therefore, in this paper, the maximum offered price is 
expressed as a triangular fuzzy number. 

This study applies such concepts as distance effect, 
capacity and penalties simultaneously so that in addition 
to determining the volume of the products that must be 
purchased during different periods, it can calculate the 
optimal number, location, and capacity of the centers to 
reach the intended goals. 

In short, this study attempts to illustrate incentive-
dependent returns in dynamic network design, which 
provides a more realistic expression of the offered in-
centives effect on customers’ reaction, and includes dif-
ferent stages. Furthermore, we will evaluate a new pro-
cedure for solving this issue, which benefits from the 
linearization and an exact solution approach. 

The remainder of this paper is organized as follows. 
After a brief review of the relevant literature in Section 
2, in Section 3, we define the problem and introduce the 
objective functions in detail. Next, the mathematical 
formulation for the model is developed. In Section 4, a 
tabu search based heuristic is described for solving the 
problem. In Section 5, a numerical example of its occur-
rence is used to show the validation of the heuristic ap-
proach and investigate model applicability, following 
which the computational results are presented for the 
algorithm. Finally, the concluding remarks are presented 
in the last section. 

2.  LITERATURE REVIEW 

Logistics literature is remarkably rich in papers in 
the context of product recovery and recycling. Fleisch-
mann et al. (2000) reviewed some case studies on logis-
tics network design for product recovery in different 
industries, after which he identified general characteris-
tics for such logistics networks. Besides, they denote 
five groups of activities that appear to be recurrent in 
EOL product recovery networks: collection, inspection/ 
separation, reprocessing, redistribution, and disposal. 

Additionally, the majority of studies on reverse flows 
formulate discrete facility location-allocation models. For 
example, Jayaraman et al. (2003) modeled the reverse 
logistics of hazardous products with a multi-level ware-
house location model. The objective of the model is to 
find the optimal number and location of collection and 
refurbishing facilities with the corresponding flow of the 
hazardous products. In their mixed-integer linear pro-
gramming model, Jayaraman et al. (2003) present the 
number of returned products at each originating site.  

Pishvaee et al. (2009) classified the literature about 
the logistics network into three sections: forward logis-
tics, reverse logistics, and integrated forward and re-
verse logistics. Based on their classified literature, there 
are not many papers that consider the logistics network 
design in multi-periods (dynamic) environment. In dy-
namic environment, Min et al. (2006) proposed a dy-
namic nonlinear mixed-integer programming model for 
the deterministic logistics network involving both spa-
tial and temporal consolidation of returned products. 
Furthermore, Ko and Evans (2007) considered a net-
work operated by a third-party logistics service provider. 
They presented a dynamic mixed-integer nonlinear pro-
gramming model for the simultaneous design of the 
forward and reverse network. 

In the literature, few papers have attempted to show 
the relationship between incentives and the product re-
turn. Some recent articles are de Figueiredo and Mayerle 
(2008), Aras and Aksen (2008) and Aksen et al. (2009). 
However, all of them have just considered the location 
of collection centers and allocation of customer zones to 
them without appraising cost and revenue issues in multi-
stage nature of reverse logistics network design.  

For instance, Aras and Aksen (2008) formulated a 
mixed-integer nonlinear facility location-allocation model 
to find both the optimal locations of a predetermined 
number of collection centers and the optimal incentive 
values for different return types. In another study, Aksen 
et al. (2009) provided a bi-level mixed-integer nonlinear 
programming to determine the location of collection cen-
ters and the optimal price offered for product return. 
Clearly, the price offered by the company influences the 
quality level and the rate of returned products. Therefore, 
they assume that reservation price follows the right tri-
angular distribution (RTD). 

To structure the literature review on logistics net-
work design and to identify future research avenues, we  
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Table 1. Coding system for classification of logistics net-
work 

have classified design problems of logistics network 
according to six general specifications: general structure 
of the network, modeling type, objective functions, pro-
blem definition, the network stages included and the 
solution method. We developed a coding system as shown 
in Table 1, and the recent mathematical models avail-
able in the literature have been coded based on this sys-
tem in Table 2. Categories based on closed loop or opened 
loop in Table 2 indicate refer to Fleischmann et al. 
(2000) who expressed the differences between the two 
networks in their article. 

As shown in Table 2, there are few papers that de-
termine the incentive price for product return in reverse 
logistics network design. These papers have just consid-
ered the simplest case of network design, which is com-
prised of single period, single product, and single stage. 
Moreover, only the location of collection and inspection 
centers (CICs) has been determined while other stages 
of the network have been neglected.  

This paper extends the reverse logistics literature 
by considering the fuzzy relationship between the pro-
posed incentive price and product acquisition. It also 
considers a dynamic design of reverse logistics with 
multi-product, multi-quality levels, multi-stage and lim-
ited budget in each period. Furthermore, in this research, 
a tabu search based heuristic has been provided so as to 
find a solution for the model. The coding of the model 
under question is provided in Table 2.  

3.  PROBLEM DEFINITION 

The reverse logistics network stages that are con-
sidered in this research have been illustrated in Figure 1. 
Based on this figure, the used products are collected from 
customer zones and sent to the collection/inspection cen-
ters. Afterwards, the products are delivered to different 
recovery centers for recycling. The following are the 
assumptions considered in the design of such a network: 
• The model is multi-period. 
• The model considers multiple products, which have a 

different but known quality level. 
• The potential locations of collection/inspection and 

recovery facilities are known and fixed. 
• Costs parameters (setup, fixed cost, variables, non-

utilized capacity, non-collected returns, transporta-
tion, and holding costs) are known for each location, 
product, and time period. 

• Holding cost depends on the residual inventory at the 
end of each period. 

• Recovery options operate independently. 
• Customers themselves dispose of used products that 

are not collected by the collectors. 
• The budget is only intended for the construction of 

facilities. It should also be noted that this amount is 
limited and that the remainder at the end of each pe-
riod can be used in other periods. 

 

Specification Abb. 
General structure 

Forward logistics 
Reverse logistics 
Integrated forward and reverse 
Open loop 
Closed loop 

Modeling 
Deterministic 

Mixed integer linear programming 
Mixed integer non-linear programming 
Bi-level mixed integer programming 

Stochastic 
Stochastic mixed integer programming 
Stochastic non-linear programming 
Robust mixed-integer programming 

Objectives 
Min cost/Max profit 
Max robustness 
Max responsiveness 

Problem definition 
Period  

Single period 
Multi periods 

Product  
Single product 
Multi product 

Number of facilities to be opened  
Endogenous 
Exogenous 
Facility  
Capacitated 
Uncapacitated 

Demand  
Deterministic 
Stochastic 

Rate of product return  
Deterministic 
Stochastic 

Flow  
Capacitated flow 
Uncapacitated flow 

Price for returned product 
Price included (should be determined) 
Price not included 

Network stages 
Supply centers 
Production centers 
Distribution centers 
Collection/inspection centers 
Recycling centers 
Redistribution centers 
Disposal centers 
Remanufacturing 
Repair center 
Refurbishing center 
Disassembly center 

  
FL 
RL 
IFR 
OL 
CL 

  
  

MILP
MINLP
BLMIP

  
SMIP 
SNLP
RMIP

  
C/P 
Rob 
Res 

  
  

SPr 
MPr 

  
SP 
MP 

  
En 
Ex 

  
CF 

UCF 
  

DD 
DS 

  
RD 
RS 

  
Ca 
Un 

  
PI 
PN 

  
SC 
PC 
DC 
CIC 
Ry 
Rd 
Dp 
Rm 
Rp 
Rf 
Da 
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Table 2. Classification of the reviewed literature 

Article General  
structure Modeling Objectives Problem definition Network stages Solution method 

Jayaraman et al. (2003) RL, OL MILP C SPr, SP, En, CF, RD, Un, PN CIC, Rf Heuristic 

Min et al. (2006) RL, CL MINLP C MPr, SP, En, UCF, DD, RD, Un, PN CIC, Ry Genetic algorithm 
Amiri (2006) FL, OL MILP C SPr, SP, En, CF, DD, Un, PN PC, DC Lagrangian relaxation
Ko and Evans (2007) IFR, CL MINLP C MPr, MP, En, CF, DD, RD, Un, PN PC, DC, Rc Genetic algorithm 
Salema et al. (2007) RL, CL, OL SMIP C SPr, MP, En, CF, DS, RS, Un, PN PC, DC, Da, Dp Branch and bound 

Sharma et al. (2007) RL, CL MILP C MPr, MP, Ex, UCF, DD, Un, PN Dp, Rf, Da Exact 
Srivastava (2008) RL, OL MILP P MPr, MP, En, CF, DD, RD, Un, PN CIC, Rp, Rm, Rf Exact 
Aras and Aksen (2008) RL, CL MINLP P SPr, MP, Ex, UCF, DD, RS, Un, PI CIC Tabu search 
Min and Ko (2008) IFR, OL MINLP C MPr, MP, En, CF, DD, RD, Un, PN PC, DC, CIC, Rp Genetic algorithm 
de Figueiredo and Mayerle (2008) RL, OL BLMIP P SPr, SP, En, UCF, RD, Un, PI CIC, Ry Heuristic 
Cruz-Rivera and Ertel (2009) RL, CL MILP C SPr, SP, Ex, UCF, DD, Un, PN CIC Exact 
Aksen et al. (2009) RL,OL BLMIP C/P SPr, SP, Ex, UCF, RS, Ca, PI CIC Tabu search 
Pishvaee et al. (2009) IFR, CL SMIP C SPr, SP, En, CF, DS, RS, Ca, PN PC, Ry, DC, CIC, Dp Exact 
El-Sayed et al. (2010) IFR, CL, OL SMIP P MPr, SP, En, CF, DS, RS, Un, PN SC, PC, DC, Da, Rd, Dp Exact 
Lee et al. (2010) IFR, CL MILP C SPr, MP, En, CF, DS, RS, Un, PN PC, DC, CIC Heuristic 

Pishvaee et al. (2010a) IFL, CL, OL MILP Res, C SPr, SP, En, CF, DD, RD, Un, PN PC, DC, CIC, Rm, Dp Memetic algorithm 
Pishvaee et al. (2010b) RL, OL MILP Res, C SPr, SP, En, Ex, CF, RD, Un, PN CIC, Dp, Rc Simulated annealing 
Pishvaee et al. (2011) IFR, CL RMIP C, Rob SPr, SP, En, CF, DD, RD, Un, PN Rd, CIC, Dp, Ry Exact 
Abdallah et al. (2011) FL, OL MIP C SPr, MP, En, CF, DD, Un, PN SC, PC, DC Exact 
Nativi and Lee (2011) RL, OL SNLP C SPr, SP, Ex, UCF, DS, RS, Un, PN SC, PC, Ry Exact 
Lamsali (2011) RL, OL MINLP P SPr, MP, En, CF, RS, Ca, PI CIC Exact 
Chaabane et al. (2012) IFR, CL MILP C MPr, MP, En, CF, DD, RD, Ca, PN SC, PC, DC, Ry Exact 
Das and Chowdhury (2012) RL, CL MIP P SPr, MP, En, CF, DD, RD, Un, PN PC, DC, SC, Ry, CIC Exact 
Amin and Zhang (2012) RL, CL MILP P SPr, MP, En, CF, DD, RD, Un, PN SC, PC, Da, Rf, Dp Exact 
Cardoso et al. (2013) IFR, CL MILP P MPr, MP, En, CF, DS, RS, Un, PN PC, DC, Dp, CIC, Da Exact 
Eskandarpour et al. (2013a) RL, CL MILP Res, C SPr, MP, En, CF, DD, RD, Ca, PN PC, CIC, Rp, Dp Heuristic 
Ramezani et al. (2013) IFR, CL SMIP Res, P SPr, MP, En, CF, DS, RS, Ca, PN SC, PC, DC, CIC, Rm, Dp Pareto-optimal 
Keyvanshokooh et al. (2013) IFR, CL MILP C MPr, MP, En, CF, DD, RS, Un, PI PC, Ry, DC, CIC, Dp Exact 
Hatefi and Jolai (2013) IFR, CL RMIP C, Rob SPr, SP, En, CF, DS, RS, Ca, PN PC, DC, CIC, Rm Exact 
Eskandarpour et al. (2013b) RL, CL MINLP Res, C SPr, MP, En, CF, DD, RD, Ca, PN SC, CIC, Ry, Dp Heuristic 

Diabat et al. (2013) RL, OL MINLP C SPr, SP, En, CF, DD, RD, Un, PN CIC 
Genetic algorithm 
Artificial immune  
system 

Our work RL, OL FMINLP C MPr, MP, En, CF, RS, Ca, PI CIC, Ry Tabu search 

For abbreviations, see Table 1. 
FMINLP: fuzzy mixed-integer nonlinear programming. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Customer zones 

Collection/inspection 
centers Recycling centers 

 
Figure 1. Reverse logistic network. 
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According to Aksen et al. (2009) the product hold-
ers’ decision to return the products can be modeled by 
using the notion of consumer surplus. The product hol-
der i which has the used product type p with quality 
level q at time t will make a return if the collection cen-
ter offers a unit incentive Bpqt that is at least as large as a 
reservation price 

0 .pqitB  It is assumed that all customers 
in different locations have the same mental model in 
responding to the similar offered price. We assume that 

0
pqitB  follows the RTD, whose density function is given 

in (1) and Figure 2. The proportion pqitP  of customers in 
zone i who are willing to return their used products of 
type p with quality level of q at time t when the collec-
tors offer incentive Bpqt per product is calculated from 
Eq. (2).  

 
( )0 0 22 /=pqit pqit pqitf B B b   (1) 

( ) ( )0 0 0 2Pr /= ≤ = =pqit pqit pqt pqit pqit pqitp B B F B B b  (2) 

 
It is noted that 

0
pqitB  takes values in an interval be-

tween 0 and bpqit, which represents the maximum con-
templated incentive by a customer for product type p 
with quality level q. However, considering the determi-
nistic value for the upper bound of this interval may not 
be suitable since customers do not consider the exact 
price for the sale of their products. Therefore, we make 
use of a triangular fuzzy form, defined by ,pqitb  to show 
the greatest amount possible. 

In the next section, based on the aforementioned 
characteristics of the network, a fuzzy mixed-integer 
nonlinear programming model is presented.  

3.1 Model Formulation 

The following notations are used in the formulation 
of the mentioned design of reverse logistics network: 

 
Sets 
P set of used product types 
T  set of time periods 
I  set of fixed customer locations 
J set of potential CICs  
H set of potential recovery locations 

L set of transportation mode 
M set of recovery facilities (RFs) outputs 
N set of capacity levels available for facilities 
Q set of used products’ quality levels 
 
Parameters 
ocjt

n cost of establishing CIC j with capacity level n in 
period t 

fcjt operating fixed cost for CIC j in period t 
vcpqjt variable operating cost of product p with quality 

level q for CIC j in period t 
wjt

n capacity with level n for CIC j in period t 
hcjt inventory holding cost at CIC j in period t 
bct available budget for CICs in period t 
orht

n cost of establishing RF h with capacity level n in 
period t 

frht operating fixed cost for RF h in period t 
vrpqht variable operating cost of product p with quality 

level q for RF h in period t 
pcht penalty per unit of non-utilized capacity at RF h 

in period t 
carht

n capacity with level n for RF h in period t 
smht sale price of final product m generated at RF h in 

period t 
αmpqht generation fraction of product m from used prod-

uct p with quality level q at RF h in period t 
brt available budget for RFs in period t 
d1i distance between customer location i and CIC j 
d2jh distance between CIC j and RF h 
ctlt handling cost of per unit product traveled in unit 

distance by transportation mode l in period t 
cplt handling cost of product p using transportation 

mode l in period t 
ca1ijlt flow capacity from customer location i to CIC j 

using transportation mode l in period t 
ca2jhlt flow capacity from CIC j to RF h using transpor-

tation mode l in period t 
rpqit quantity of used product p with quality level q in 

customer zone i in period t 
ucpt penalty per unit of non-collected product p in 

period t 
pqitb  contemplated price by customer i for product p 

with quality level q in period t 

 

1

0( )pqitf B

2

pqitb

0( )pqitF B

pqitb pqitb0
pqitB 0

pqitB  
Figure 2. The triangular distribution of purchase incentive. 
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Decision variables 
Q1pqijlt quantity of product p with quality level q shipped 

from customer zone i to CIC j using transporta-
tion mode l in period t 

Q2pqjhlt quantity of product p with quality level q shipped 
from CIC j to RF h using transportation mode l 
in period t 

Bpqt offered price for used product p with quality 
level q in period t 

n
jtX  binary variable, it takes 1 if CIC j with capacity 

level n is installed in period t, and 0 if otherwise 
n

htY  binary variable, it takes 1 if RF h with capacity 
level n is installed in period t, and 0 if otherwise 

 
Dependent variable 
Ipjt inventory level of used product p collected at 

CIC j in period t 
Upit quantity of uncollected product p from customer 

i in period t 
CtS  remaining budget for CICs at the end of period t 
rtS  remaining budget for RFs at the end of period t 
pqitp  percent of customers in zone i who are willing to 

return their product of type p with quality level q 
in period t  

n
jtϕ  binary variable, it takes 1 if CIC j with capacity 

level n is installed in period t or before t, and 0 if 
otherwise 

n
htξ  binary variable, it take 1 if RF h with capacity 

level n is installed in period t or before of t and 0 
otherwise  

 
Based on the aforementioned parameters and indices, 

the fuzzy mixed-integer nonlinear programming (FMIN 
LP) model is developed. The objective function is to mi-
nimize the total costs minus potential revenues from re-
covering the used product. The objective function includes 
the following issues: 

 
• Opening and operating cost of collection and in-

spection centers: it needs to be mentioned that if the 
facility opens during a period, it will remain open in 
the subsequent periods. Establishing the cost of CIC 
and RF facilities occurs once they are established for 
the first time. Operating fixed cost is charged in each 
period after the establishment of the facility. 

n n n
jt jt jt jt

n j t j t n
oc X fc ϕ

⎛ ⎞
⋅ + ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑∑ ∑∑ ∑  (3) 

pqit pqiljt
p q j j l t

vc Ql+ ⋅∑∑∑∑∑∑  

• Opening and operating cost of recovery centers: 

n n n
ht ht ht ht

n h t h t n
or Y fr ζ

⎛ ⎞
⋅ + ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑∑ ∑∑ ∑  (4) 

2pqht pqlhlt
p q j h l t

vr Q+∑∑∑∑∑∑  

• Purchasing cost of the used products: 
 

pqijlt pqt
p q i j l t

Ql B⋅∑∑∑∑∑∑  (5) 

 
• Inventory holding cost at CICs: 

 
pjt jt

p j t
I hc⋅∑∑∑  (6) 

 
• Penalty for non-collected products: 

 
pit pt

p i t
U uc⋅∑∑∑  (7) 

 
• Transportation cost: 

 
( )1 1pqijlt plt it ij

p q i j l t
Q c ct d+ ⋅∑∑∑∑∑∑  (8) 

( )2 2pqjhlt plt it jh
p q j k l t

Q c ct d+ + ⋅∑∑∑∑∑∑  

 
• Penalty for non-utilization: 

 

2n n
ht ht ht pqjhlt

h t n p q j l
pc car Qζ

⎛ ⎞
⎜ ⎟⋅ ⋅ −
⎜ ⎟
⎝ ⎠

∑∑ ∑ ∑∑∑∑  (9) 

 
• Revenues from recovering used product plus the 

remaining budget in the final period: these reve-
nues are subtracted from costs at objective function. 

 
2

Rpqjhlt mpqht mht T r
m p q j h l t

Q s Sc Sα⋅ ⋅ + +∑∑∑∑∑∑∑  (10) 

 
The objective function is to minimize the summa-

tion of Eqs. (3)–(9) minus Eq. (10). The constraints for 
the model are as follows. 

 
1n

jt
t n

X ≤∑∑   j J∀ ∈  (11) 

1n
ht

t n
Y ≤∑∑   h H∀ ∈  (12) 

1 1n
pqijlt jt ijlt

p q n
Q caϕ≤ ⋅∑∑ ∑   (13) 

, , ,i I j J l L t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  
2 2n

pqjhlt ht jhlt
p q n

Q caξ≤ ⋅∑∑ ∑   (14) 

, , ,j J h H l L t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  
2 n n

pqjhlt ht ht
p q j h n

Q car ξ≤ ⋅∑∑∑∑ ∑  (15) 

,h H t T∀ ∈ ∀ ∈  

( 1) 1 2pj t pqijlt pjt pqjhlt
q i l q h l

I Q I Q− + = +∑∑∑ ∑∑∑  (16) 

, ,p P j J t T∀ ∈ ∀ ∈ ∀ ∈  

0 0pjI =   ,p P j J∀ ∈ ∀ ∈  (17) 
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n n
pjt jt jt

p
I w ϕ≤ ⋅∑  , ,j J t T n N∀ ∈ ∀ ∈ ∀ ∈  (18) 

1pqijlt pit pqit
q j l q

Q U r+ =∑∑∑ ∑  (19) 

, ,p P i I t T∀ ∈ ∀ ∈ ∀ ∈  
1pqijlt pqit pqit

j l
Q P r≤ ⋅∑∑  (20) 

, , ,p P q Q i I t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  
2

2
pqt

pqit
pqit

B
P

b
=   , , ,p P q Q i I t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (21) 

1
n n
jt jt t t t

n j
oc X SC bc Sc −⋅ + = +∑∑  t T∀ ∈  (22) 

0 0,Sc =  (23) 

1
n n

ht ht t t t
n h

or Y Sr br Sr −⋅ + = +∑∑  t T∀ ∈  (24) 

0 0,Sr =  (25) 
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1
t n n

jt jtt X ϕ′′=
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1
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ht ht
t
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Bpqt , Ppqit , Upit , Ipjt , Q1pqijlt , Q2pqjhl ,  
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{ }, 0, 1n n
jt htX Y ∈  , , ,j J h H n N t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (30) 

 
Constraints (11) and (12) ensure that a facility can 

be established in each location at most in one capacity 
level. Eqs. (13) and (14) represent capacity limitations 
on product flow between different nodes. Constraint (15) 
illustrates the capacity restrictions on recovery facilities 
in terms of the number of total products entering them. 
Eq. (16) assures the inventory balance of used products 
at CICs during periods. Eq. (17) determines the initial 
inventory of products collected at CICs. Constraint (18) 
indicates the inventory capacity limitation at CICs. In 
Eq. (19), it is shown that the quantity of returned prod-
ucts is related to the potential quantity in customer zones. 
On the other hand, this equation bounds the amount of 
returned products. Constraint (20) represents possible 
uttermost quantity of various products that can be col-
lected from customer zones. Eq. (21) shows the relation-
ship between the maximum proportion of returns and 
the offered incentive. Eqs. (22) to (25) assure budget 
counterbalance among different periods. Fuzzy Eq. (26) 
guarantees that the offered prices do not exceed the 
RTD upper bound. Eqs. (27) and (28) specify facilities 
that have been opened in the previous periods. Finally, 
constraints in set (29) enforce the non-negativity restric-
tions on the corresponding decision variables and con-
straints in set (30) enforce the integrality restrictions on 
the binary variables. 

In this paper, a linear ranking function is applied to 
convert the fuzzy parameter into the crisp equivalent 
number through the use of the first index of Yager (1978) 

and Yager (1981). Thus, by applying the index of Ronald 
and considering the triangular fuzzy number of pqitb =  

( ), ,L C R
pqit pqit pqitm m m , the aforementioned FMINLP prob-

lem is transformed into the crisp equivalent problem by 
replacing constraints (21) and (26) with the following 
equations. 

 
2

2 ,

3

pqt
pqit

R L
pqit pqitC

pqit

B
P

d d
m

=
⎡ ⎤−

+⎢ ⎥
⎢ ⎥⎣ ⎦

   (31) 

, , , ,p P q Q i I t T∀ ∈ ∀ ∈ ∈ ∈  

3

R L
pqit pqitC

pqt pqit
d d

B m
−

≤ +    (32) 

, , , ,p P q Q i I t T∀ ∈ ∀ ∈ ∈ ∈  
 

where 
R
pqitd  and 

L
pqitd  are the lateral margins (right and 

left, respectively) of the triangular fuzzy number with 
central point of 

C
pqitm (Figure 3). 

4.  SOLUTION APPROACH 

Since our model has been known as NP-hard, it is 
difficult to obtain high quality solutions for the relatively 
large-sized examples in a reasonable timeframe using 
commercial software. Therefore, a heuristic algorithm is 
developed to solve it. 

In this section, we propose an iterative algorithm 
based on tabu search procedure. Tabu search belongs to 
a class of local search techniques and is based on avoid-
ing local optima by using memory structures called tabu 
lists. These lists temporarily record visited solutions and 
prevent them from being cycled around.  

Tabu search performs a search for the solution 
space by moving from one identified solution to the best 
solution in a subset of the neighborhood of the current 
solution. Since there is no necessity to improve the solu-
tion in all iterations, a tabu mechanism is provided to 
prevent the turning process in a sequential series of solu-
tions. This way, the exploration process is not allowed 

1

( )mpqit xμ

L
pqitm

L C L
pqit pqit pqitd m m= −

C
pqitm R

pqitm
pqitb

R R C
pqit pqit pqitd m m= −

Figure 3. Triangular fuzzy number. 
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to go back to the previous encountered solutions. 
Another feature of the algorithm is called ‘diversi-

fication’ and ensures the search process is not limited to 
a restricted part of the solution space. In addition, inten-
sification is identified as yet another characteristic of the 
approach that consists of a greedy local search around 
the best-recognized solutions. 

4.1 Proposed Tabu Search Approach 

Due to the type of the model and the dependence of 
variables, the complexity of this problem is extremely 
high; this is why it is necessary to use a proper method 
for providing solutions. In this paper, a heuristic appro-
ach is applied, which utilizes two procedures, one being 
approximate and the other one exact, in each iteration. 

We use tabu search for providing solutions to the 
problem and we take advantage of CPLEX libraries to 
achieve an exact solution at each stage. First, the model 
is converted to a convex linear form through determin-
ing the neighbor solutions for some variables, including 
φ, ξ (or X and Y) and B by tabu search algorithm (the 
full explanation is provided in the initial solution). Af-
terwards, the model is solved through the use of CPLEX 
software libraries. Finally, the obtained values by 
CPLEX for objective functions, Q1 and Q2, return to the 
main algorithm and this process would be repeated to 

satisfy the stop condition. We terminate the algorithm as 
soon as the maximum number of iterations limit is met. 
The algorithm structure can be seen in Figure 4, where 
the used notations are defined as follows: 

 
Num_Iter number of performed iterations 
Max_Iter maximum number of iterations 
Num_notchange number of iterations throughout which 

the incumbent does not improve 
Max_notchange maximum amount of iterations thro-

ughout which the incumbent does not 
improve 

Obj  objective value of newly generated 
neighboring solution 

Best_Neigh objective value of the best neighboring 
solution 

Obj* objective value of the incumbent 
 
The main parts of the algorithm are the following: 
 

Initial solution generation: 
As mentioned above, the initial solutions are gen-

erated only for the offered price and location of CICs 
and RFs. These centers are randomly assigned to the 
available places after reviewing and examining alloca-
tion requirements. When the assigning condition, the 
setup cost is lower than the remaining budget, is satis-

 

Start
Read 

Problem 
Data

Generate an initial 
solution and set its 
Objective as Obj* Set Best_Neigh to a 

sufficient large number

Set num_Iter and 
num_notchange to zero. Num_Iter<Max

_Iter

Calculate 
neighborhood 
size as Nsize,
Also set tsize

to zero

tsize<Nsize

End

Generate a new 
neighbor

Generate Random 
amount for B (Buy 

price)

SIMPLEX SEARCH
Using CPLEX Library

Obtain Obj as Objective

Obj<Best_Neigh

Best_Neigh:=Obj

Best_Neigh<Obj*
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in Tabu List?

This neighbor is 
in Tabu List?
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solution from tabu list
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A

A

Yes
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A
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Figure 4. The general structure of proposed tabu search approach. 

 



Reverse Logistics Network Design with Incentive-Dependent Return 
Vol 13, No 4, December 2014, pp.383-397, © 2014 KIIE 391
  

 

fied, these places are removed from the list of the avail-
able places and the associated variables X and Y, as well 
as the dependent variables φ and ξ, take 1. Besides, the 
capacity of centers is randomly selected from among the 
intended cases for sites (n) in the same way. 

Now the amount of Bpqt is estimated by a random 
value between zero and the highest price calculated among 
customers for the used product p with quality level q in 
period t. 

 
Generate the neighbor solutions: 

At this stage, the entire possible neighborhoods must 
be investigated. In our algorithm, initially, the location 
is assigned to the CICs or the RFs without taking the 
feasibility into account (the procedure is illustrated in 
Algorithm 1 in Appendix). In Figure 5, a visual repre-
sentation of generating neighbor solutions is depicted, 
where rows and columns show potential centers and 
periods, respectively and black dots indicate construc-
tion of the centers. 

 
Afterward their feasibility is considered by func-

tions given in Algorithm 2, and according to what was 
said about generating initial solutions, the value of of-
fered prices (B) would be determined for every feasible 
answer. Then, a simplex search will be performed on the 
model using CPLEX library. 

 
Tabu list: 

In any iteration that has achieved a better answer 
than the existing answers, the current answer is trans-
ferred to tabu list to avoid the loop and duplication of 
answers. This way, the tabu list is specifically designed 
for objective functions, X and Y. After generating a nei-

ghboring solution and determining the objective value, 
the answer is primarily compared with the current solu-
tion. Afterwards, its non-attendance in the tabu list is 
checked (Algorithm 3). The comparisons are made us-
ing the objective values and if they are equal, they will 
be conducted through the comparison of X and Y. 

 
Releasing condition: 

In one of the iterations, if the best solution obtained 
in the neighborhood is better than the current solution, 
but has been in the tabu list, it is released from the list 
and instead, the last solution is listed. 

 
According to the components explained in detail 

above, the structure of tabu search algorithm is given as 
Algorithm 4. 

 
Algorithm 4. Main structure of the tabu search algo-
rithm 

 

Begin 
//TL: Tabu List, contains Collection and Recovery Cen-
ters and Fitness; 
CapLevCol, CapLevRec: indicate Capacity Level of each 
established Centers; 
Cur, New, N1 and B: indicate Current, New, Best of 
Neighbors and Best Solution, respectively// 
 
Initialize Solution: 
    Cur_φ; Cur_ξ; 
    Cur_X; Cur_Y; 
    Cur_Q1, Cur_Q2, Cur_Fitness ← Simplex(Cur_ φ, 
Cur_ ξ); 
While iteration < Max_iteration do  
    N1Fitness = NB (Cur_ φ, Cur_ ξ); 
    If N1_Fitness < Cur_Fitness then 
        Tabu_List ← Cur_ φ, Cur_ ξ, Cur_Fitness; 
        Cur_Solution ← N1_Solution; 
        If TL_Checker (Cur_X, Cur_Y, Cur_Fitness) then 
            //Aspiration 
            Remove Cur_Solution from TL 
        End If. 
        If N1_Fitness < Best_Fitness then 
            Best_Solution ← N1_Solution; 
        End If.    
    Else 
        If TL_Checker (N1_X, N1_Y, N1_Fitness) then 
            Cur_Solution ← N1_Solution; 
        End if. 
    End If.  
    iteration = iteration+1; 
End While. 
End. 

5.  NUMERICAL EXAMPLE 

To evaluate the performance of the proposed approach  

 

Figure 5. A symbolic representation of generating neighbor 
solutions. 
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Table 3. Test problems’ dimensions 

Problem number 
 

1 2 3 4 5
Product types 
Time periods 
Customers 
Collection/inspection centers 
Recovery centers 
Transportation mode 
Quality levels 
Capacity levels 
Recovery facilities outputs 

P 
T 
I 
J 
H 
L 
Q 
N 
M 

2 
3 
5 
3 
2 
2 
3 
4 
2 

4 
3 
5 
4 
3 
2 
3 
4 
2 

5 
4 
10 
5 
3 
2 
2 
2 
2 

3
5
20
10
5
2
2
2
2

3
6
25
15
8
2
2
2
2

 
Table 4. Values of the parameters used in the test problems 

Parameter Symbol Range* 
Setup cost ocjt

n ~ uni[200, 450] 

Operating fixed cost fcjt ~ uni[50, 100] 
Operating variable cost vcpqjt ~ uni[0.1, 1] 
Inventory capacity wjt ~ uni[500, 2000] 
Holding cost hcjt ~ uni[0.2, 0.6] 
Budget bct ~ uni[400, 700] 
Setup cost orht

n ~ uni[400, 700] 
Operating fixed cost frht ~ uni[100, 150] 
Operating variable cost vrpqht ~ uni[0.1, 1.5] 
Non-capacity penalty pcht ~ uni[0.2, 0.5] 
Capacity carht

n ~ uni[7000, 9000]
Sole price smht ~ uni[7, 12] 
Transmutation fraction αmpqht ~ uni[0, 1] 
Distance d1ij ~ uni[100, 250] 
Distance d2jh ~ uni[40, 150] 
Transmit cost ctlt ~ uni[0.001, 0.01]
Transmit cost cplt ~ uni[1, 3] 
Flow capacity ca1ijlt ~ uni[4000, 6500]
Flow capacity ca2jhlt ~ uni[7000, 9000]
Potential return rpqit ~ uni[300, 800] 
Upper bound price range pqitb  ~ uni[5, 9] 

Maximum violation pqitt  ~ uni[0, 1.6] 
Non-collected penalty ucpt ~ uni[4, 7] 

* Uniform distribution[lower bound, upper bound]. 
 

on small and medium-sized problems, some illustrative 
examples have been developed. The size of the investi-
gated examples and their parameters value are specified 
in Tables 3 and 4, respectively. In Table 4, parameters 
have been randomly generated using uniform distribu-
tions. 

Table 5 gives a report of the results obtained by the 
heuristic method coded in C++ as a sub-algorithm, and 
numerous reruns at some iteration in the first instance. 
The resultant behavior of the proposed model is illus-
trated by a group of titles defined in the following: 

1) Is calculated as the sum of the total quantity of 
uncollected returns from customers, 

2) Is the remaining budget for making CICs and RFs 
at the final date of planned periods, 

3) Total income that has been earned by the sale of 
new products, 

4) Total cost is the sum of all costs that are spent in 
every period of the considered planning horizon, 

5) Average time taken by the algorithm for solving 
the model, 

 
According to the analysis conducted on different it-

erations, as shown in Table 5, it is observed that there 
was considerable amelioration among the obtained re-
sults although there was not a significant improvement 
at iterations higher than 200. Figure 6 depicts the objec-
tive values that are calculated from the difference be-
tween the total costs and incomes. 

After this, the approach accuracy assessment re-
sults have been summarized using two solving methods, 
Lingo 13.0 solver and presented tabu search algorithm, 
in Table 6. All experiments were run in an Intel Core i3 
CPU, at 2.13 GHz and with 4.00 GB of RAM. Moreover, 
the solution of Lingo is a local optimal solution, which 
can be known from the results in Table 6. To make a 
comparison, we have used the initial dimensions ex-
pressed in Table 3 and have randomly generated ten 
examples with different values of parameters in the 
range given in Table 4. According to this table and what  

 

 
      Iteration 

Figure 6. Changes in the initial objective value made by 
increasing the number of iterations. 

 
Table 5. Changes in the initial output made by increasing the number of iterations 

Iteration Uncollected returns Remaining budget ($) Total income ($) Total cost ($) Time (sec) 
100 28,560 1,068 3,372 105,494.0 321 
150 27,659 754 3,058 83,179.2 480 
200 18,526 1,986 4,290 50,532.0 656 
250 16,583 2,218 4,522 49,127.8 749 
300 19,293 1,757 4,061 35,383.7 997 
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Figure 7. Comparison of objective values by two solving 

methods for different examples. 

 
is shown in Figure 7, it can be observed that in addition 
to reducing the time spent on solving the problems 
through tabu search significantly, the improving results 
obtained by tabu search for different examples is ap-
proximately 10% to 70% better than the Lingo results. 

The results of the other instances are presented in 
Table 7 to show the effectiveness of the proposed tabu 
search approach in solving higher-dimensional examples. 
All the runs were done at 200 iterations in the same 
manner as before. As it can be seen, the suggested ap-
proach is able to solve the problems that could not be 
solved by the commercial software in a finite time, 
though the solving time has dramatically surged with the 
increasing size of the problems. 

As the results in Table 7 show, it can be understood 
which heuristic approach causes a significant improve-
ment not only in the average time spent by the algorithm 
for solving the model but also in the objective values on 
medium to high-sized problems. 

6.  CONCLUSION  

To sum up, since there are not many articles that dis-
cuss financial incentive issues in reverse logistics, this 
paper investigated a dynamic mathematical model to ap-
praise the incentive effect on return quantity of used pro-
ducts in a reverse logistics network design, which inclu-
ded different stages. In the optimization model, the RTD 
applying the fuzzy technique was used to interpret this 
relation. Furthermore, other effective parameters have 
been applied to configure a mixed integer nonlinear pro-
gramming model for locating facilities and allocating 
customers to them, determining the optimal suggested 
price and planning the recovery strategy in a product re-
turn network. 

Moreover, a heuristic method based on the tabu search 
procedure has been proposed for problem solving, which 
has benefited from the linearization and the exact solu-
tion approach. This was followed by comparing the re-
sults with those of Lingo commercial software for giv-
ing illustrative examples to analyze and validate the me-
thod. The computational results show the efficiency and 
effectiveness of the developed heuristic solution method 
when time complexity is addressed.  

This study has developed several points that can be 
further investigated in future researches. For instance, 
the accuracy and efficiency of the proposed method could 
be improved. Furthermore, a number of verification and 
validation methods could be helpful in testing the accu-
racy and consistency of the process. Another potential 
extension to the setting investigated in this paper may 
consider the inclusion of different patterns for the be-
havior responding to the incentives offered. Finally, con-
sidering other stages of the reverse logistics network and 
improving the efficiency of the proposed method may 

Table 6. Comparison of the results obtained by tabu search and the commercial solver for instance one 

Lingo Tabu search solution Example 
Total income ($) Total cost ($) Time (sec) Total income ($) Total cost ($) Time (sec)

1 2,050.3 180,896.0 5,884 3,632 123,822.0 602 
2 2,165.7 84,959.1 9,416 3,111 73,887.6 659 
3 2,409.2 170,351.4 8,971 3,090 120,314.0 643 
4 3,440.8 190,282.7 7,463 3,350 113,564.0 638 
5 2,247.0 155,448.0 7,543 3,710 68,638.1 643 
6 2,061.3 154,646.2 7,090 3,442 88,152.3 632 
7 2,059.0 78,565.9 9,724 3,624 69,643.7 666 
8 2,564.7 193,548.2 10,133 3,931 69,171.5 644 
9 3,202.4 164,761.9 9,241 4,132 91,511.1 617 
10 3,574.3 104,940.0 6,074 3,903 75,108.5 639 

 
Table 7. Performance of the solution method on the problem instances 

Instance Uncollected returns Remaining budget ($) Total income ($) Total cost ($) Time (sec) 
(2) 58,241 1,278 9,751 167,914 1,906 
(3) 40,687 967 3,768 147,534 806 
(4) 157,881 1,374 13,258 704,571 5,529 
(5) 146,051 3,190 33,284 560,230 28,358 
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be beneficial in testing the process. 
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Appendix 

Algorithm 1. Neighborhood solution generating procedure 
 

Procedure NB (φ, ξ): 
Begin 
 
For each j in J and t in T 
  New_ φ ← φ; 
  New_X ← Cur_X; 
  Capacity_Level ← Random number between zero and 

Capacity Level Number; 
 For each t’ in T 

    If t’ < t then 
 New_ φ [Capacity_Level][j][t’] = False;  

 Else 
 New_ φ [Capacity_Level][j][t’] = True; 

 End If. 
 New_X [Capacity_Level][ j][t’] = False; 

 End Loop. 
  New_X [Capacity_Level][j][t’] = True; 
  If Feasibility_Checker_Col (New_X) 
    New_Q1, New _Q2, New_Fitness ← Simplex 

(New_ φ, ξ); 
 If New_Fitness < N1_Fitness 

 N1_Solution ← New_Solution; 
 End If. 

  End If. 
End Loop. 
 
For each h in H and t in T 
  New_ ξ ← ξ; 
 New_Y ← Cur_Y; 

  Capacity_Level ← Random number between 0 and 
Capacity Level Number; 

  For each t’ in T 
    If t’ < t then 
      New_ ξ [Capacity_Level][h][t’] = False;  
    Else 
      New_ ξ [Capacity_Level][h][t’] = True; 
    End If. 
    New_Y [Capacity_Level][j][t’] = False; 
  End Loop. 
  New_Y [Capacity_Level][j][t’] = True; 
  If Feasibility_Checker_Rec (New_Y) 
    New_Q1, New _Q2, New_Fitness ← Simplex (φ, 

New_ ξ); 
    If New_Fitness < N1_Fitness 

 N1_Solution ← New_Solution; 
    End If. 
  End If. 
End Loop. 
 
Return N1_Fitness; 
End. 

 
 
 

 
 

Algorithm 2. Feasibility checker procedure 
 

Procedure Feasibility_Checker_Col (New_X): 
Begin 
feasibility: Binary variable; 
For each t in T 
 NewSC [t] = BC[t] + NewSC [t-1]; 

  If NewSC [t-1] <0 then 
    feasibility = false; 
    break; 
  End If. 
  For each j in J 
    If New_X [j][t] 
      NewSC [t] -= OC [CapLevCol][j]][j][t]; 
    End If. 
  End Loop. 
End Loop. 
 
Return feasibility; 
End. 
 
 
Procedure Feasibility_Checker_Rec (New_Y): 
Begin 
feasibility: Binary variable; 
For each t in T 
  NewSR [t] = BR[t] + NewSR [t-1]; 
  If NewSR [t-1] <0 then 
    feasibility = false; 
    break; 
  End If. 
  For each h in H 
    If New_Y [h][t] 
      NewSR [t] -= OR [CapLevRec][h]][h][t]; 
    End If. 
   End Loop. 
End Loop. 
 
Return feasibility; 
End. 
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Algorithm 3. Tabu List checker Procedure 
 

Procedure TL_Checker(X, Y, Fitness): 
Begin 
Status: Binary variable; 
Status = False; 
For each solution i in TL 
  If TL.Fitness[i] == Fitness Then 
    For each t in T 
      For each j in J 
 If TL.Col[i][j][t] != X[j][t] Then 

 Status = True; 
   break; 
 End If. 
      End Loop. 
      For each h in H 

 If TL.Rec[i][h][t] != Y[h][t] Then 
  Status = True; 
  break; 

End If. 
   End Loop. 

   End Loop. 
 End If.   
End Loop. 
 
Return Status; 
End. 
 

 
 


