• Title/Summary/Keyword: Reversal technique

Search Result 109, Processing Time 0.028 seconds

Additional Stresses in Flange Frame of Tube Structures under Lateral Loading (수평하중을 받는 튜브 구조물의 플랜지에 작용하는 부가 응력)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.317-322
    • /
    • 2001
  • A mathematical modelling technique is proposed for estimating the additional bending stresses of tube(s)-in-tube structures due to tube-tube interaction, which has a significant effects on the shear-lag phenomenon. The proposed method simulates the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. Hence, the tube(s)-in-tube structure can be analysed by using an analogy approach where each tube is individually modelled by a continuous beam that can account for the flexural and shear deformations as well as the shear-lag effects. The numerical analysis is applicable for the structural analysis of framed-tube structures with single and multiple internal tubes, as well as those without internal tubes. The shear-lag phenomenon of such structures is studied with additiona] bending stresses and shear-lag reversal points.

  • PDF

Solar Interior Currents Presumed by Solar Surface Magnetic Fields

  • Bogyeong Kim;Yu Yi
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.187-194
    • /
    • 2023
  • The remote sensing technique of measuring the magnetic field was applied first to sunspots by Hale (1908). Later Babcock (1961) showed that the solar surface magnetic field on a global scale is a dipole in first-order approximation and that this dipole field reverses once every solar cycle. The Wilcox Solar Observatory (WSO) supplies the spherical harmonics coefficients of the solar corona magnetic field of each Carrington Rotation, calculated based on the remotely-sensed photospheric magnetic field of the solar surface. To infer the internal current system producing the global solar coronal magnetic field structure and evolution of the Sun, we calculate the multipole components of the solar magnetic field using the WSO data from 1976 to 2019. The prominent cycle components over the last 4 solar activity cycles are axis-symmetric fields of the dipole and octupole. This implies that the current inversion driving the solar magnetic field reversal originates from the equatorial region and spreads to the whole globe. Thus, a more accurate solar dynamo model must include an explanation of the origin and evolution of such solar internal current dynamics.

The effects of thermal relaxation times in thermo-viscoelastic tissues during hyperthermia treatment

  • Ibrahim A. Abbas;Aboelnour N. Abdalla;Abdelrahman A. Abbas
    • Advances in materials Research
    • /
    • v.13 no.4
    • /
    • pp.321-334
    • /
    • 2024
  • The paper is a study on the biothermoelastic analysis in viscoelastic biological tissues in the presence of thermal relaxation times. Using Laplace transforms and related methodologies, we explore how living tissue responds to an exponentially decaying pulse of heat flux at the boundary. The Laplace transformations are reversed using the numerical method. The Tzuo technique was used to measure the reversal. Temperature, displacement, and stress distributions are affected by single-phase and delay relaxation coefficients as well as volume rheological factors, are provided with numerical findings and graphically depicted. In addition, we carry out a parametric analysis to provide assistance in choosing the design variables that are the most successful, which finally results in an improvement in the accuracy of hyperthermia treatments.

The basic study on the origin of recently emerging Meridian-based Psychotherapy (최근 등장한 경락기반 심리치료법의 연원에 대한 기초 연구)

  • Lee, Jeong-Won;Kim, Gyeong-Cheol
    • Korean Journal of Oriental Medicine
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2012
  • Objectives : The purpose of this study is to identify the origin of meridian-based psychotherapy, and thereby utilize this technique more flexibly and widely, as well as use our findings as the base data for the development of unique and oriental medicine-based psychotherapies. Methods : This study investigated various activities and references of meridian-based psychotherapy developers in historical order. For the books that have been translated into Korean, the translated books were examined as priority. Otherwise, examination was based on original books. Results : The study results were as follows. EFT (Emotional Freedom Techniques) is a technique completed by combining the psychological reversal, acupuncture point tapping, and gamut series in TFT (Thought Field Therapy), and the affirmations that were formed by reflecting the deep understanding on languages derived from NLP (Neuro Linguistic Programming). ESM (Emotional Self Management) can be viewed as having applied the implications of cognitive therapy and hypnosis while accepting the treatment of TFT as it is. Roger J. Callahan developed TFT by adopting theories such as AK(Applied Kinesiology), acupuncture, NLP, quantum mechanics, and split brains. On the EFT, ESM, TFT, the method for stimulating acupuncture points appears to be tapping, which is one technique of the oriental traditional exercise and manual techniques(導引按蹻). Tapping may be the English translation of Bak-beop(拍法). Conclusions : When the oriental medicine techniques that enable meridian tuning are applied along with accommodating Western psychological theories actively, this can not only help use meridian-based psychotherapy more flexibly, but also enable the development of new oriental medicine-based psychotherapies.

Measurement of Turbulence Properties at the Time of Flow Reversal Under High Wave Conditions in Hujeong Beach (후정해변 고파랑 조건하에서 파랑유속 방향전환점에서 발생하는 난류성분의 측정)

  • Chang, Yeon S.;Do, Jong Dae;Kim, Sun-Sin;Ahn, Kyungmo;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.206-216
    • /
    • 2017
  • The temporal distribution of the turbulence kinetic energy (TKE) and the vertical component of Reynolds stresses ($-{\bar{u^{\prime}w^{\prime}}}$) was measured during one wave period under high wave energy conditions. The wave data were obtained at Hujeong Beach in the east coast of Korea at January 14~18 of 2017 when an extratropical cyclone was developed in the East Sea. Among the whole thousands of waves measured during the period, hundreds of regular waves that had with similar pattern were selected for the analysis in order to give three representing mean wave patterns using the ensemble average technique. The turbulence properties were then estimated based on the selected wave data. It is interesting to find out that $-{\bar{u^{\prime}w^{\prime}}}$ has one clear peak near the time of flow reversal while TKE has two peaks at the corresponding times of maximum cross-shore velocity magnitudes. The distinguished pattern of Reynolds stress indicates that vertical fluxes of such properties as suspended sediments may be enhanced at the time when the horizontal flow direction is reversed to disturb the flows, supporting the turbulence convection process proposed by Nielsen (1992). The characteristic patterns of turbulence properties are examined using the CADMAS-SURF Reynolds-Averaged Navier-Stokes (RANS) model. Although the model can reasonably simulate the distribution of TKE pattern, it fails to produce the $-{\bar{u^{\prime}w^{\prime}}}$ peak at the time of flow reversal, which indicates that the application of RANS model is limited in the prediction of some turbulence properties such as Reynolds stresses.

Mitigation of Inter-Symbol Interference in Underwater Acoustic Communication Using Spatial Filter (공간 필터를 이용한 수중음향통신의 인접 심볼 간 간섭 완화)

  • Eom, Min-Jeong;Park, Ji-Sung;Ji, Yoon-Hee;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • The underwater acoustic communication (UAC) is characterized by doubly spread channel. It is included in the time-variant doppler shift and delay-time spreads due to multiple paths. To compensate such distorted signals, various techniques including time-reversal processing, spatial diversity, phase estimator, and equalizer are being applied. In this paper, a spatial filter based on the beamforming is proposed as a method to mitigate such inter-symbol interferences that are generated in time-varying multipath channels. The proposed technique realizes coherent communications by steering the direction of the desired signals and improves the performance of UAC by increasing the signal-to-interference plus noise ratio using the array gain.

A Case Report of PNF Strategy Applied ICF Tool on Upper Extremity Function for Patient Adhesive Capsulitis (유착성 관절낭염 환자의 상지 기능에 대한 ICF Tool을 적용한 PNF 중재전략의 증례보고)

  • Kang, Tae-Woo;Kim, Tae-Yoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.4
    • /
    • pp.19-28
    • /
    • 2017
  • PURPOSE: The purpose of this study was to describe the Proprioceptive Neuromuscular Facilitation (PNF) Intervention strategy applied International Classification of Functioning, Disability and Health (ICF) Tool about strength, range of motion, scapular stability, pain and function of shoulder for patients with adhesive capsulitis. METHODS: The data was collected by patient with adhesive capsulitis. The patient was a 50-year-old male diagnosed with right shoulder with adhesive capsulitis. We applied the PNF Intervention strategy applied ICF Tool to patient with adhesive capsulitis. PNF interventions were consisting of such as combination of isotonic and stabilizing reversal technique and various positions. PNF interventions were applied, such as those aiming at decreasing pain and disability and increasing range of motion and function for the four weeks. Parameters of result were collected for strength, range of motion, scapular stability, pain and function of shoulder using the hand held dynamometer, goniometer, lateral scapula slide test, and shoulder pain and disability index, respectively. RESULTS: Clinical benefits were observed the patient with adhesive capsulitis for strength, range of motion, scapular stability, pain, and function of shoulder. The patient with adhesive capsulitis improved strength, range of motion, scapular stability, pain, and function of shoulder. CONCLUSION: Patient reported improved strength, range of motion, scapular stability, pain, and function of shoulder after intervention.

Effects of Extacellular Divalent Cations on the Hyperpolarization-activated Currents in Rat Dorsal Root Ganglion Neurons (세포 밖 2가 양이온이 과분극에 의해 활성화되는 전류($I_h$)에 미치는 영향)

  • Kwak, Ji-Yeon
    • YAKHAK HOEJI
    • /
    • v.56 no.2
    • /
    • pp.108-115
    • /
    • 2012
  • The hyperpolarization-activated current ($I_h$) is an inward cation current activated by hyperpolarization of the membrane potential and plays a role as an important modulator of action potential firing frequency in many excitable cells. In the present study we investigated the effects of extracellular divalent cations on $I_h$ in dorsal root ganglion (DRG) neurons using whole-cell voltage clamp technique. $I_h$ was slightly increased in $Ca^{2+}$-free bath solution. BAPTA-AM did not change the amplitudes of $I_h$. Amplitudes of $I_h$ were decreased by $Ca^{2+}$, $Mg^{2+}$ and $Ba^{2+}$ dose-dependently and voltage-independently. Inhibition magnitudes of $I_h$ by external divalent cations were partly reversed by the concomitant increase of extracellular $K^+$ concentration. Reversal potential of $I_h$ was significantly shifted by $Ba^{2+}$ and $V_{1/2}$ was significantly affected by the changes of extracellular $Ca^{2+}$ concentrations. These results suggest that $I_h$ is inhibited by extracellular divalent cations ($Ca^{2+}$, $Mg^{2+}$ and $Ba^{2+}$) by interfering ion influxes in cultured rat DRG neurons.

Low cycle fatigue behaviour of TMCP steel in as-received and welded states (TMCP 고장력강재와 그 용접부의 저사이클피로특성에 관한 연구)

  • 김영식;한명수
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.46-57
    • /
    • 1990
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics, especially, in the welded state of this steel. In case of this steel, the softening zone by welding is generated in heat affected zone in contrast with the case of conventional normalized high strength steel. This softening zone is considered to play significant roles in low cycle fatigue fracture of the welded part of this steel. In this paper, the low cycle fatigue behaviors of TMCP steel were inspected in as-received and welded state using the smooth specimen. The fatigue life-time was seperately investigated on the basis of failure of the specimen and crack initiation which is detected by differential strain method. Moreover, the low cycle fatigue characteristics of TMCP steel were quantitatively compared with those of the conventional normalized steel of same strength level.

  • PDF

Design and Evaluation of an Ultra Precision Rotary Table for Freeform Machine Tools (자유곡면가공기용 초정밀 회전테이블의 설계 및 평가)

  • Hwang, Joo-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.94-100
    • /
    • 2010
  • This paper describes the design and evaluation procedure of an ultra-precision rotary table for freeform generating machined tools. Design of the thrust and journal hydrostatic bearings and experimental evaluation of the table were performed. To get the compact size and less lost motion direct drive servomotor with ultra precision encoder. From the considered design, following performance were confirmed by experiment. The total stiffness of the prototype rotary table was 483.6 $N/{\mu}m$ and 97.6 $N/{\mu}m$ for axial and radial direction, respectively. Rotational accuracy of the table was investigated by capacitive sensor and reversal measurement technique, and 0.10 ${\mu}m$ radial direction and 0.05 ${\mu}m$ axial direction of the rotational accuracy were confirmed. The micro resolution of the table was also investigated with displacement of capacitive sensor, and $0.5/10000^{\circ}$ of micro resolution was confirmed. Index accuracy of the table was evaluated by the autocollimator and polygon mirror, and the $\pm0.39$ arcsec accuracy and $\pm0.16$ arcsec repeatability of the table were confirmed. Those are under the general requirements of ultra precision rotary tables for freeform generating machined tools.