• 제목/요약/키워드: Reversal technique

검색결과 109건 처리시간 0.023초

Time Reversal Focusing and Imaging of Point-Like Defects in Specimens with Nonplanar Surface Geometry

  • Jeong, Hyun-Jo;Lee, Hyun-Kee;Bae, Sung-Min;Lee, Jung-Sik
    • 비파괴검사학회지
    • /
    • 제30권6호
    • /
    • pp.569-577
    • /
    • 2010
  • Nonplanar surface geometries of components are frequently encountered in real ultrasonic inspection situations. Use of rigid array transducers can lead to beam defocusing and reduction of defect image quality due to the mismatch between the planar array and the changing surface. When a flexible array is used to fit the complex surface profile, the locations of array elements should be known to compute the delay time necessary for adaptive heam focusing. An alternative method is to employ the time reversal focusing technique that does not require a prior knowledge about the properties and structures of the specimen and the transducer. In this paper, a time reversal method is applied to simulate beam focusing of flexible arrays and imaging of point-like defects contained in specimens with nonplanar surface geometry. Quantitative comparisons are made for the performance of a number of array techniques in terms of the ability to focus and image three point-like reflectors positioned at regular intervals. The sinusoidal profile array studied here exhibits almost the same image quality as the flat, reference case.

단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정 (Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques)

  • 조성종;정현조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.715-722
    • /
    • 2012
  • A structural health monitoring (SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal (TR) and inverse filtering (IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

  • PDF

Lamb파의 시간-반전과정 및 이미지기법을 이용한 손상탐지 (Structural Damage Detection by Using the Time-Reversal Process of Lamb Waves and the Imaging Method)

  • 전용주;이우식
    • 한국철도학회논문집
    • /
    • 제14권4호
    • /
    • pp.320-326
    • /
    • 2011
  • 본 연구에서는 Lamb파에 대한 시간-반전과정과 이미지기법을 기반으로 하여 기준 데이터를 사용하지 않는 구조물 건전성 모니터링(SHM) 기술을 제안하였다. 제안된 기술이 갖는 주요 세가지 특징은 다음과 같다: (1) 제안된 기술에서는 귀환신호를 직접 손상진단에 사용하기 때문에 귀환신호와 초기 입력신호의 차이로부터 손상신호를 구할 필요가 없다; (2) 기존의 기술에서 널리 사용되는 형상비교법을 사용하지 않고 귀환신호에서 얻는 비시간 정보를 활용하는 이미지기법을 사용하였다; (3) 손상 이미지를 보다 뚜렷하게 얻기 위하여 이미지에 대한 개선된 수학적 정의를 사용하였다. 본 연구에서 제안한 SHM기술은 손상을 평판의 몇몇 위치에 부가한 경우에 대한 손상탐지 실험을 수행함으로써 검증하였다.

PNF 목 패턴을 이용한 목 운동이 경추척수증 환자의 균형, 양팔의 저린감 및 목의 움직임에 미치는 영향 - 단일 사례 연구 - (The Effects of a Neck Exercise using a PNF Neck Pattern on the Balance and Numbness of Both the Upper Extremities and Neck Motions in Patients with Cervical Myelopathy - Single Subject Design -)

  • 박시은;임우택;문상현
    • PNF and Movement
    • /
    • 제16권3호
    • /
    • pp.333-343
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effects of a neck exercise using a proprioceptive neuromuscular facilitation (PNF) neck flexion and extension pattern on body balance in a progressive range of positions (supine, prone on elbow, and sitting), on numbness in the upper extremities, and on neck flexion motions in cervical myelopathy patients. Methods: One participant who was diagnosed with cervical myelopathy participated in this study. A reversal design (A-B-A') was used. The A and A' were the baseline period (no intervention), and B was the intervention period. The intervention used a neck extension pattern with a hold-relax technique and a neck flexion pattern with a combination of isotonic techniques in the supine position. Then, neck flexion and extension patterns were applied together with a reversal technique for stabilization, followed by a neck extension pattern with a combination of isotonic techniques in the prone position on the elbows. Finally, a neck flexion and extension pattern was used with a stabilizing reversal technique, and a neck extension pattern was applied with a combination of isotonic techniques in the sitting position for 60 minutes per day, 3 times per week for 8 weeks. To measure balance, numbness, and neck motion during neck flexion, the one-leg stand test and the visual analogue scale were used. Results: The right and left one-leg stand tests showed increased balance ability in the intervention phase. Upper extremity numbness was decreased in the intervention phase, and neck flexion motion was increased in the intervention phase. These increases were maintained after the intervention (Baseline II). Conclusion: These results suggest that a neck exercise using a PNF neck pattern with additional techniques in a progressive range of positions has a positive effect on cervical myelopathy patients for balance, numbness, and neck motion.

On time reversal-based signal enhancement for active lamb wave-based damage identification

  • Wang, Qiang;Yuan, Shenfang;Hong, Ming;Su, Zhongqing
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1463-1479
    • /
    • 2015
  • Lamb waves have been a promising candidate for quantitative damage identification for various engineering structures, taking advantage of their superb capabilities of traveling for long distances with fast propagation and low attenuation. However, the application of Lamb waves in damage identification so far has been hampered by the fact that the characteristic signals associated with defects are generally weaker compared with those arising from boundary reflections, mode conversions and environmental noises, making it a tough task to achieve satisfactory damage identification from the time series. With awareness of this challenge, this paper proposes a time reversal-based technique to enhance the strength of damage-scattered signals, which has been previously applied to bulk wave-based damage detection successfully. The investigation includes (i) an analysis of Lamb wave propagation in a plate, generated by PZT patches mounted on the structure; (ii) an introduction of the time reversal theory dedicated for waveform reconstruction with a narrow-band input; (iii) a process of enhancing damage-scattered signals based on time reversal focalization; and (iv) the experimental investigation of the proposed approach to enhance the damage identification on a composite plate. The results have demonstrated that signals scattered by delamination in the composite plate can be enhanced remarkably with the assistance of the proposed process, benefiting from which the damage in the plate is identified with ease and high precision.

Active monitoring of pipeline tapered thread connection based on time reversal using piezoceramic transducers

  • Hong, Xiaobin;Song, Gangbing;Ruan, Jiaobiao;Zhang, Zhimin;Wu, Sidong;Liu, Guixiong
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.643-662
    • /
    • 2016
  • The monitoring of structural integrity of pipeline tapered thread connections is of great significance in terms of safe operation in the industry. In order to detect effectively the loosening degree of tapered thread connection, an active sensing method using piezoceramic transducers was developed based on time reversal technique in this paper. As the piezoeramic transducers can be either as actuators or sensors to generate or detect stress waves, the energy transmission for tapered thread connection was analyzed. Subsequently, the detection principle for tapered thread connection based on time reversal was introduced. Finally, the inherent relationship between the contact area and tightness degree of tapered thread connection for the pipe structural model was investigated. Seven different contact area scenarios were tested. Each scenario was created by loosening connectors ranging from 3 turns to 4.5 turns in the right tapered threads when the contact area in the left tapered threads were 4.5 turns. The experiments were separately conducted with a highly noisy environment and various excitation signal amplitudes. The results show the focused peaks based on time reversal have the monotonously rising trend with the increase of the contact areas of tapered threads within an acceptable monitoring resolution for metal pipes. Compared with the energy method, the proposed time reversal based method to monitor tapered threads loosening demonstrates to be more robust in rejecting noise in Structural Health Monitoring (SHM) applications.

평지방막에 융합된 골격근의 single ATP-sensitive K+ channel의 이온투과성에 대한 연구 (Permeability properties of skeletal muscle ATP-sensitive K+ channels reconstituted into planar lipid bilayer)

  • 류판동
    • 대한수의학회지
    • /
    • 제32권4호
    • /
    • pp.543-553
    • /
    • 1992
  • Properties of unitary ATP-sensitive $K^+$ channels were studied using planar lipid bilayer technique. Vesicles were prepared from bullfrog (Rana catesbeiana) skeletal muscle. ATP-sensitive $K^+$ (K (ATP)) channels were identified by their unitary conductance and sensitivity to ATP. In the symmetrical solution containing 200mM KCI, 10mM Hepes, 1mM EGTA and pH 7.2, single K (ATP) channels showed a linear current-voltage relations with slight inward rectification. Slope conductance at reversal potential was $60.1{\pm}0.43$ pS(n=3)). Micromolar ATP reversibly inhibited the channel activity when applied to the cytoplasmic side. In the range of -50~+50 mV, the channel activity was not voltage-dependent, but the channel gating within a burst was more frequent at negative voltage range. Varying the concentrations of external/internal KCl(mM) to 40/200, 200/200, 200/100 and 200/40 shifted reversal potentials to $-30.8{\pm}2.9$(n=3), $-1.1{\pm}2.7$(n=3), 10.5 and 30.6(mV), respecrivety. These reversal potentials were close to the expected values by the Nernst equation, indicating nearly ideal selectivity for $K^+$ over $Cl^-$. Under bi-ionic conditions of 200mM external test ions and 200mM internal $K^+$, the reversal potentials for each test ion/K pair were measured. The measured reversal potentials were used for the calculation of the releative permeability of alkali cations to $K^+$ ions using the Goldman-Hodgkin-Katz equation. The permeability sequence of 5 cations relative to $K^+$ was $K^+$(1), $Rb^+$(0.49), $Cs^+$(0.27), $Na^+$(0.027) and $Li^+$(0.021). This sequence was recognized as Eisenman's selectivity sequence IV. In addition, modelling the permeation of $K^+$ ion through ATP-sensitive $K^+$ channel revealed that a 3-barrier 2-site multiple occupancy model can reasonably predict the observed current-voltage relations.

  • PDF

Time Delay Focusing of Ultrasonic Array Transducers on a Defect Using the Concept of a Time Reversal Process

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Lee, Chung-Hoon;Jun, Ghi-Chan
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.550-556
    • /
    • 2009
  • In an application of a time reversal(TR) focusing of array transducer on a defect inside the test material, we employ a new time delay focusing technique based the TR process. In order to realize this idea, a multi-channel ultrasonic system is constructed capable of applying necessary time delays to each channel. The TR-based focusing procedure first measures the backscattered signals after firing one of the array elements. A phase slope method is then used to determine the time-of-flights of the backscattered signals received by all elements of the array. These time delays are used to adjust the time of excitation of the elements for transmission focusing on the defect. In addition to the TR focusing, the classical phased array focusing is also considered for comparison. Experimental results show that the TR-based time delay focusing produces much stronger backscattered signals than the phased array focusing, demonstrating the enhanced capability of the TR focusing.

Bolt looseness detection and localization using time reversal signal and neural network techniques

  • Duan, Yuanfeng;Sui, Xiaodong;Tang, Zhifeng;Yun, Chungbang
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.397-410
    • /
    • 2022
  • It is essential to monitor the working conditions of bolt-connected joints, which are widely used in various kinds of steel structures. The looseness of bolts may directly affect the stability and safety of the entire structure. In this study, a guided wave-based method for bolt looseness detection and localization is presented for a joint structure with multiple bolts. SH waves generated and received by a small number (two pairs) of magnetostrictive transducers were used. The bolt looseness index was proposed based on the changes in the reconstructed responses excited by the time reversal signals of the measured unit impulse responses. The damage locations and local damage severities were estimated using the damage indices from several wave propagation paths. The back propagation neural network (BPNN) technique was employed to identify the local damages. Numerical and experimental studies were conducted on a lap joint with eight bolts. The results show that the total damage severity can be successfully detected under the effect of external force and measurement noise. The local damage severity can be estimated reasonably for the experimental data using the BPNN constructed by the training patterns generated from the finite element simulations.