• Title/Summary/Keyword: Reusable

Search Result 571, Processing Time 0.027 seconds

3D-printed Face Shields for Healthcare Professionals Battling COVID-19 Pandemic

  • Kim, Gyeong-Man;Assefa, Dawit;Kang, Joon Wun;Gebreyouhannes, Esayas
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.226-237
    • /
    • 2020
  • As the number of reported COVID-19 cases rises around the world, regions affected by the virus are taking serious measures to contain its spread. Face shields are one of the highest-need personal protective equipment (PPE) during COVID-19 pandemic. Beyond traditional face masks, as known cases of the coronavirus soar, currently there is a significant shortage of face shields around the world. In response, the protective face shields were designed and fabricated with open-source 3D modelling software and 3D printing technology, respectively. Our face shield consisted of two parts only; a reusable 3D printed headband and a visor made of transparent plastic sheet, as barrier. The resulting 3D printed face shields are affordable, lightweight, one-size-fits-most and ready-to-wear with minimal assemblies, and go on easily over glass, goggle and face mask. To ensure being donated to the healthcare professionals without risk infected by any pathogens, the 3D printed face shields were successfully be disinfected with ultraviolet germicidal irradiation (UVGI dosage of 1000 mJ/cm2) and 70% alcohol. For routine disinfection a UVGI chamber was designed and optimized to provide uniform UV-C illumination with an appreciated fluence for complete decontamination. More than 1,000 face shields were produced already and donated to the special hospitals for COVID-19 patients, quarantines, government and medical agencies in Ethiopia as well as in East-African countries. With certainty, our intention goes beyond the hospitals and other first responders, but not limited for all those who have to stay in the service or be in contact with many other people in the time of COVID-19 pandemic.

Development Trends of Liquid Methane Rocket Engine and Implications (액체로켓 메탄엔진 개발동향 및 시사점)

  • Lim, Byoungjik;Kim, Cheulwoong;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung;Ahn, Kyubok;Namkoung, Hyuck-Joon;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.119-143
    • /
    • 2021
  • Selecting liquid methane as fuel is a prevailing trend for recent rocket engine developments around the world, triggered by its affordability, reusability, storability for deep space exploration, and prospect for in-situ resource utilization. Given years of time required for acquiring a new rocket engine, a national-level R&D program to develop a methane engine is highly desirable at the earliest opportunity in order to catch up with this worldwide trend towards reusing launch vehicles for competitiveness and mission flexibility. In light of the monumental cost associated with development, fabrication, and testing of a booster stage engine, it is strategically a prudent choice to start with a low-thrust engine and build up space application cases.

High Pressure Spray and Combustion Characteristics of Throttleable Pintle Injector (가변추력 핀틀 분사기의 고압 분무 및 연소특성)

  • Kim, Dae Hwan;Heo, Subeom;Kim, Inho;Hwang, Donghyun;Kang, Cheolwoong;Lee, Shinwoo;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.60-71
    • /
    • 2022
  • The reusable, low-cost launch vehicle development trend in the recent launch vehicle market is being subdivided into several ways, and the throttleable engine is one of them. Plus, several nations have selected methane as a next-generation propellant due to its cleanness. In this research, a throttleable pintle injector using gas methane and liquid oxygen as propellants was developed, followed by its spray and combustion characteristics analysis, including high pressure cold and hot tests. The designed throttleable pintle injector has a double sleeve structure, and its tightness and functionality are confirmed through repetitive atmospheric, high-pressure cold tests, and hot tests. Though some design errors were discovered and a low throttling level was unable to be achieved in the combustion test.

A Blockchain-based User-centric Role Based Access Control Mechanism (블록체인 기반의 사용자 중심 역할기반 접근제어 기법 연구)

  • Lee, YongJoo;Woo, SungHee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1060-1070
    • /
    • 2022
  • With the development of information technology, the size of the system has become larger and diversified, and the existing role-based access control has faced limitations. Blockchain technology is being used in various fields by presenting new solutions to existing security vulnerabilities. This paper suggests efficient role-based access control in a blockchain where the required gas and processing time vary depending on the access frequency and capacity of the storage. The proposed method redefines the role of reusable units, introduces a hierarchical structure that can efficiently reflect dynamic states to enhance efficiency and scalability, and includes user-centered authentication functions to enable cryptocurrency linkage. The proposed model was theoretically verified using Markov chain, implemented in Ethereum private network, and compared experiments on representative functions were conducted to verify the time and gas efficiency required for user addition and transaction registration. Based on this in the future, structural expansion and experiments are required in consideration of exception situations.

Tasks for Development of Autogenous Pressurization System and Construction of Test Equipment (자가증기 가압시스템 개발과제 및 모사시험설비 구성)

  • Cheulwoong Kim;Jisung Yoo;Sangyeon Ji;Jae Sung Park
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • The autogenous pressurization has been widely adopted for propulsion systems of next-generation reusable rockets due to its low cost and high reliability. The autogenous pressurization has a simple structure, but an understanding of the heat and mass transfer occurring inside the tank is essential. For this reason, a simulation test of the autogenous pressurization was conceived. The experiment equipment was constructed based on overseas pressurization test facilities cases and expert advice. Unlike the actual autogenous pressurization system, the propellant tank was insulated to exclude external influences. The pressurized gas supply line and the propellant pipe were separated. Using the manufactured autogenous pressure experiment equipment, it is possible to evaluate the condensation phenomenon of pressurants in cryogenic propellants, comparison of the efficiency of pressurization using helium and evaporated gas and the pressurization capacity according to the temperature of pressurant.

Feminine Hygiene Practices and Feminine Genital Infection in Adult Reproductive Age Women (성인 가임기 여성의 생식기 위생관리와 생식기 감염)

  • Yu, Mi Hwa;Ha, Ju Young
    • Journal of Korean Public Health Nursing
    • /
    • v.37 no.2
    • /
    • pp.218-232
    • /
    • 2023
  • Purpose: This study was undertaken to identify the risk factors of genital infection by examining the genital hygiene practice followed by adult women of reproductive age. The results can be applied as basic data for health education and health management on female genital hygiene practices. Methods: Data ware collected by conducting an online survey, comprising 200 adult women of reproductive age. Genital infections according to genital hygiene practice were analyzed by simple logistic regression. Results: In this study, the Odds Ratio (OR) of genital infection occurrence of genital hygiene practices used were disposable briefs 4.11 (CI 1.79-9.39, p=0.020), feminine deodorant spray 3.13 (CI 1.37-7.15, p=0.007), deodorant, vaginal inserts (tabs/supp) 10.60 (CI 3.97-28.28, p<0.001), over the counter anti-itch products 3.73 (CI 1.67-8.34, p=0.001), blotting 11.47 (CI 4.62-28.48, p<0.001), natural sea sponge 4.98 (CI 2.04-12.15, p<0.001), reusable cotton pads 5.76 (CI 2.48-13.33, p<0.001), tampons 2.60 (CI 1.17-5.77, p=0.019), tampons/pads between periods 4.79 (CI 2.07-11.10, p<0.001) and tampons/pads combination 4.11 (CI 1.79-9.39, p=0.001) Conclusion: Our results indicated the necessity to refrain from unnecessary application of genital hygiene practices, which is highly related to genital infections identified in this study. There is a need to continue education for proper performance.

Design of Navigation Filter for Underwater Glider (수중글라이더용 항법필터 설계)

  • Yoo, Tae Suk;Cha, Ae Ri;Park, Ho Gyu;Kim, Moon Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1890-1897
    • /
    • 2022
  • In this paper, we design a navigation filter for an underwater glider. Underwater gliders are low-cost, reusable, and can be used for a long time. Two types of filters are designed considering characteristics such as small size, low cost, and low power. The navigation filter estimates the reference velocity of the underwater glider's body frame based on the minimum sensor output. The sensor configuration of the first filter consists of an accelerometer, a magnetometer, and a depth sensor. the second filter include extra a gyroscope in the same configuration. The estimated velocity is fused with the attitude, converted into the velocity of the navigation frame and finally the position is estimated. To analyze the performance of the proposed filter, analysis was performed using Monte Carlo numerical analysis method, and the results were analyzed with standard deviation (1σ). Standard deviations of each filter's position error are 334.34m, 125.91m.

Advancing Reproducibility in Hydrological Modeling: Integration of Open Repositories, Cloud-Based JupyterHub, and Model APIs (온라인저장소, 클라우드기반 JupyterHub와 모델 APIs를 활용한 수자원 모델링의 재현성 개선)

  • Choi, Young Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.118-118
    • /
    • 2022
  • 지속적인 학문의 발전을 위해서는 선행연구에 대한 재현성이 무엇보다도 중요하다고 할 수 있다. 하지만 컴퓨터와 소프트웨어의 급속한 발달로 인한 컴퓨터 환경의 다양화, 분석 소프트웨어의 지속적 최신화로 인해서 최근 구축된 모델도 짧게는 몇 달, 길게는 1~2년후면 다양한 에러로 인하여 재현성이 불가능해지고 있다. 이러한 재현성의 극복을 위해서 온라인을 통한 데이터와 소스코드의 공유의 필요성이 제시되고 있으나, 실제로는 개인마다 컴퓨터 환경, 버전, 소프트웨어 설치에 필요한 라이브러리의 버전 또는 디렉토리 등이 달라 단순히 온라인을 통한 데이터와 소스코드의 공유만으로 재현성을 개선하기는 힘든 것이 현실이다. 따라서 이러한 컴퓨터 모델링 환경의 공유는 과거의 형태와 같이 데이터, 소스코드와 매뉴얼의 공유만으로 불가능하다고 할 수 있다. 따라서 본 연구에서는 수자원 모델링의 재현성 개선을 위해 1) 온라인 저장소, 2) 클라우드기반 JupyterHub 모델링 환경과 3) 모델 APIs 3개의 핵심 구성요소를 제시하고, 최근 미국에서 개발된SUMMA(Structure for Unifying Multiple Modeling Alternative) 수자원 모델에 적용하여 재현성 달성을 위한 3개의 핵심 구성요소의 필요성과 용이성을 검증하였다. 첫 번째, 데이터와 모델의 온라인 공유는 FAIR(Findable, Accessible, Interoperable, Reusable) 원칙으로 개발된 수자원분야의 대표적인 온라인 저장소인 HydroShare를 활용하여 모델입력자료를 메타데이터와 함께 공유하였다. 두 번째, HydroShare에서 Web App의 형태로 제공되는 클라우드기반 JupyterHub환경인 CUAHSI JupyterHub(CJH)와 일루노이대학에서 제공하는 CyberGIS-Jupyter for water JupyterHub(CJW)환경에 수자원모델링 환경을 컨테이너(Docker) 환경을 통해 구축·공유하였다. 마지막으로, 클라우드에서 수자원모델의 효율적 이용을 위해 Python기반의SUMMA모델 API인 pySUMMA를 개발·공유하였다. 이와같이 구축된 3개의 핵심 구성요소를 이용하여 2015년 Water Resources Research에 게재된 SUMMA 논문의 9개 Test Cases 중에서 5개를 누구나 쉽게 재현할 수 있음을 증명하였다. 재현성의 중요성에 대한 인식의 증가로 Open과 Transparent Hydrology에 대한 요구가 증대되고 있으며, 이를 위해서 클라우드 기반의 모델링 환경구축 및 제공이 확대되고 있다. 본 연구에서 제시한 HydroShare와 같은 온라인 저장소, CJH와 CJW와 같은 클라우드기반 모델링환경, 모델의 효율적 이용을 위한 모델 APIs는 급속도로 발달하고 있는 컴퓨터 및 소프트웨어 환경에서 핵심구성요소이며, 연구의 재현성 개선을 통해 수자원공학 발전에 기여할 것으로 기대된다.

  • PDF

Evaluation of the Rotational Stiffness of Connections between Vertical and Horizontal Members for the Highly Reusable System Supports (재사용율이 높은 시스템 동바리의 수직재와 수평재 연결부 회전강성 평가)

  • Ji-Sun Park;Tae-Hyeob Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.517-526
    • /
    • 2023
  • To avoid arbitrary design and excessive braces of system supports with high reusability in the field, this study aimed to propose connection conditions for the vertical and horizontal joints of the system supports based on performance evaluation. Disk-type and pocket-type connection materials, widely used in domestic construction sites, were selected for evaluation of rotational stiffness based on load directions(vertical and horizontal) and loading methods (monotonic and cyclic). Contrary to the current design standards specifying a rotational stiffness of "0" for connection materials, the experimental results revealed that, contrary to the current design standards specifying a rotational stiffness of "0" for connection materials, all specimens exhibited rotational stiffness values. The maximum rotational stiffness was observed to be 19.624 kNm/rad in specimens subjected to repeated loading in the vertical direction using disk-type connection materials.

A Preliminary Study on Evaluation of TimeDependent Radionuclide Removal Performance Using Artificial Intelligence for Biological Adsorbents

  • Janghee Lee;Seungsoo Jang;Min-Jae Lee;Woo-Sung Cho;Joo Yeon Kim;Sangsoo Han;Sung Gyun Shin;Sun Young Lee;Dae Hyuk Jang;Miyong Yun;Song Hyun Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.175-183
    • /
    • 2023
  • Background: Recently, biological adsorbents have been developed for removing radionuclides from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. However, since they can be damaged by radiation in radioactive waste, a method for estimating the bio-adsorbent performance as a time should consider the radiation damages in terms of their renewability. This paper aims to develop a simulation method that applies a deep learning technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents when inserted into liquid radioactive waste. Materials and Methods: A model that describes various interactions between a bio-adsorbent and liquid has been constructed using numerical methods to estimate the adsorption capacity of the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) simulations were conducted while considering radioactive concentrations in the adsorbent column. Results and Discussion: Compared with the result of the conventional method, the proposed method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 score and mean absolute percentage error, respectively. Furthermore, the estimation speed is improved by over 30 times. Conclusion: Note that an artificial neural network can rapidly and accurately estimate the survival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation and can determine if the bio-adsorbents are reusable.