최근 SNS 서비스의 확산과 스마트 장치의 일반적인 보급에 따라 수많은 사용자들이 트위터를 비롯한 SNS를 이용하고 있다. 본 논문에서는 영향력 높은 트위터 사용자를 찾기 위한 방법으로 클러스터링 및 랭킹 기법을 적용하는 연구를 수행하였다. 트위터에서 일반적으로 중요하다고 여겨지는 follow, Retweet을 포함한 총 5가지의 랭킹 요소를 제안하고 해당 랭킹 요소들을 클러스터링을 위한 초기 중심점 선정 시 기준으로 설정함으로써 클러스터링 결과의 향상을 위한 비교 실험을 수행하였다. 이를 통해 트위터 인플루엔셜 추출의 새로운 방향을 제시할 수 있을 것으로 사료된다.
SNS의 활용이 급격히 증가하면서, 소비자와 생산자 모두에게 구전(word-of-mouse)의 중요성과 유용성은 그 어느 때보다 커지고 있다. 이 연구에서는 메시지의 방향성(긍정, 부정, 중립)과 유형(사실적, 평가적)이 SNS를 통한 구전에 어떠한 영향을 미치는지 정량적으로 분석하였다. 이를 위해 대표적 SNS인 트위터 메시지 1천3백만 개를 수집하였으며, 이중 1번 이상 리트윗(retweet)된 1백만 개 메시지를 분석하였다. 분석결과, 메시지 방향성과 유형, URL, 해시태그 포함여부가 구전범위(리트윗 횟수)에 유의한(<0.01) 영향을 미치는 것으로 나타났으며, 메시지 방향성은 다른 세 개 요인들과 유의한 교호작용 효과를 가지는 것으로 관찰되었다. 또한 메시지 유형과 URL, 해시태그 포함여부는 구전속도(리트윗 속도)에 유의한(<0.05) 영향을 미치는 것으로 나타났다.
입소문효과의 극대화를 위한 유력자의 역할은 트위터 네트워크에서도 매우 중요하다고 볼 수 있다. 본 논문에서는 기업 마케팅의 관점에서 트위터 유력자를 파악하고자 하였다. 기업의 마케팅 메시지가 가능한 한 많은 사람들에게 노출되기 위해서는 특정인의 팔로어 수뿐만 아니라 계속적인 리트윗을 통해 입소문이 많이 확산되어야 할 것이다. 즉, 팔로어 수는 많은데 리트윗되지 않거나 리트윗은 많이 되는데 소수자에게 주로 리트윗된다면 전체적인 노출의 정도는 미약하게 될 것이다. 트위터의 특정 검색네트워크 데이터를 이용한 그래프 비교를 통해 다음과 같은 사실을 확인할 수 있었다. 첫째, 리트윗이 없는 팔로어 유력자에 비하여 팔로어 유력자의 리트윗을 받는 상대적인 소수자들의 노출도가 크다는 것을 알 수 있었다. 둘째, 리트윗 유력자중에서도 팔로어 유력자에 의하여 리트윗을 받지 못하는 사용자의 노출도는 매우 미미하다는 것을 알 수 있었다. 위와 같은 사실은 노출도를 높이기 위해서는 실제 유력자도 중요하지만 그런 유력자의 리트윗을 유도하는 사용자의 파악이 더 중요하다는 점을 시사해준다고 볼 수 있다. 이와 함께 노출도의 경우 대부분의 중앙성 척도와 고른 상관관계를 유지하고 있어 노출도가 높은 이용자일수록 네트워크구조상에서도 중심적인 위상을 차지한다는 점도 살펴볼 수 있었다.
본 논문에서는 트레이닝 데이터가 제한된 환경에서 n-gram 사전을 이용하여 불건전 정보를 포함하는 스팸 트윗을 탐지하는 방법을 제안한다. 불건전 정보를 포함하는 스팸 트윗은 유사한 단어와 문장을 사용하는 경향이 있다. 이러한 특성을 이용하여 스팸 트윗과 정상 트윗에 대한 n-gram 사전을 구축하고 나이브 베이스 분류기를 적용하여 효과적으로 스팸 트윗을 탐지할 수 있음을 보인다. 반면에, 실시간으로 대용량의 데이터가 유입되는 트위터의 특성은 초기 트레이닝 집합 구성에 매우 큰 비용을 요구 한다. 따라서, 초기 트레이닝 집합이 매우 작거나 존재하지 않는 환경에서 적용할 수 있는 스팸 트윗 탐지 방법이 필요하다. 이를 위해 트위터의 리트윗 기능을 활용하여 의사 라벨을 생성하고 초기 트레이닝 집합의 구성과 n-gram 사전 업데이트에 활용하는 방법을 제안한다. 2016년 12월 1일부터 2016년 12월 7일까지 수집된 한국어 트윗 130만 건을 사용한 다양한 실험 결과는 비교 방법들보다 제안하는 방법의 성능이 우수함을 입증한다.
문서를 대상으로 한 다양한 감정 분류 연구가 진행되어 왔으며, 최근에는 트윗 감정 분류에 그대로 적용되고 있다. 그러나 이러한 연구들은 트윗의 구조, 이모티콘, 철자 오류 그리고 신조어와 같은 트윗의 특징을 고려하지 않아 좋은 성능을 보이지 못하고 있다. 본 논문에서는 기계학습을 기반으로 다양한 자질을(이모티콘 극성, 리트윗 극성, 사용자 극성, 대체 어휘)사용하여 실험하여 트윗 감정 분류 성능의 영향을 확인하였다. 기계 학습기 SVM(Support Vector Machine) 기반의 감정 분류 실험으로 이모티콘 극성 자질과 사용자 극성 자질이 트윗 감정 분류 모델의 성능 향상에 기여를 하는 것을 알 수 있었다. 이와 비교하여 리트윗 극성과 대체 어휘 자질은 트윗 감정 분류 모델에 큰 영향이 없는 것을 알 수 있었다.
This study aims to investigate the effect of message content and source user identity on information diffusion in Twitter networks. For the empirical study, we collected 11,346 tweets pertaining to the three major mobile telecom carriers in Korea for three months, from September to December 2011. These tweets generated 59,111 retweets (RTs) and were retweeted at least once. Our analysis indicates that information diffusion in Twitter in terms of RT volume is affected primarily by the type of message content, such as the inclusion of corporate social responsibility activities. However, the effect of message content on information diffusion is heterogeneous to the identity of the information source. We argue that user identity affects recipients' perception of the credibility of focal information. Our study offers insights into the information diffusion mechanism in online social networks and provides managerial implications on the strategic utilization of online social networks for marketing communications with customers.
This paper suggests the way that it could improve the reliability about preference of user's feedback by adding weighting factor on sentiment analysis, and efficiently make a sentiment analysis of users' emotional perspective on the big data massively generated on twitter. To solve errors on earlier studies, this paper has improved recall and precision of sensibility determination by using sensibility dictionary subdivided sentiment polarity based on the level of sensibility and given impotance to sensibility determination by populating slang, new words, emoticons and idiomatic expressions not in the system dictionary. It has considered the context through conjunctive adverbs fixed in korean characteristics which are free to the word order. It also recognize sensibility words such as TF(Term Frequency), RT(Retweet), Follower which are weighting factors of preference and has increased reliability of preference analysis considering weight on 'a very emotional tweet', 'a recognised tweet from users' and 'a tweeter influencer'
인터넷 상에서 많은 사람들은 사용자 간의 의사소통과 정보 공유, 사회적 관계를 생성하기 위한 방법으로 소셜 네트워크 서비스를 이용한다. 그 중 대표적인 트위터는 하루에 수백만 건의 소셜 데이터가 발생하기 때문에 수집되고 있는 데이터의 양이 엄청나다. 이 방대한 양의 데이터로부터 의미 있는 정보를 추출하는 소셜 마이닝이 집중적으로 연구되고 있다. 트위터는 일반적으로 유용한 정보 혹은 공유하고자 하는 내용을 팔로잉-팔로워 관계를 이용해 쉽게 전달하고 리트윗할 수 있다. 소셜 미디어에서 트윗 데이터에 대한 토픽 모델링은 이슈를 추적하기 위한 좋은 도구이다. 짧은 텍스트 기반인 트윗 데이터의 제한점을 극복하기 위해, 사용자를 노드로 사용자간 댓글과 리트윗 메시지의 여부를 간선으로 하는 그래프 구조를 갖는 댓글 그래프의 개념을 소개한다. 토픽 모델링의 대표적인 방법인 LDA 토픽 모델이 짧은 텍스트 데이터에 대해 비효율적인 것을 보완하기 위한 방법으로, 이 논문에서는 짧은 문서의 수를 줄이고 마이닝 결과의 질을 향상시키기 위한 댓글 그래프를 사용하는 토픽 모델링 방법을 소개한다. 제안한 모델은 토픽 모델링 방법으로 LDA 모델을 사용하였으며, 7일간 수집한 트윗 데이터에 대한 실험 결과를 보인다.
인터넷으로 대표되는 정보기술의 발전은 우리의 일상생활과 기업활동에 많은 영향을 미쳐 왔다. 아울러 최근에는 온라인 소셜네트워크라는 새로운 인터넷 커뮤니케이션 채널의 등장과 확산으로 인해 이용자들은 시간과 공간적인 제약 없이 전세계적인 의사소통을 할 수 있게 되었고 우리사회는 또 다른 패러다임의 변화를 맞이하고 있다. 이들 소셜네트워크 중 트위터는 가장 빠른 성장세를 보이는 온라인 매체 중 하나로 사용자는 140 단어 이내의 비교적 간단한 문장을 온라인 상에 게시하고 (Tweet) 다른 사용자들이 게시한 메시지를 다시 게시할 (Retweet) 수도 있다. 트위터의 이러한 Tweet/Retweet 기능은 새로운 온라인 정보확산 매카니즘의 예를 보여주며 상호 의사소통의 속도와 범위에 영향을 주고 있다. 비즈니스 관점에서의 트위터의 확산은 온라인 소셜네트워크를 제품 프로모션을 위한 새로운 마케팅 커뮤니케이션의 도구로 활용할 수 있는 기회를 제공하고 있다. 본 연구는 마케팅 전략적 관점에서 트위터의 잠재성을 이해하는 목적에서 트위터 상의 정보전달체계 중심으로 신제품 프로모션에 대한 온라인 소셜네트워크의 구전효과를 분석 하였다. 이를 위해 특정 신제품과 관련하여 2011년 6월부터 9월 사이에 게재된 트위터 메시지를 수집하여 트위터 메시지가 제공하는 정보의 충실도, 메시지 특성, 메시지 게재자의 성격등과 같은 변수와 온라인 소셜네트워크 상의 구전효과 (리트윗 횟수)와의 관계를 분석하였다. 분석결과 신제품 출시일자 정보, 제품사양, 리트윗 요청, 트윗 게시자 특성 등이 구전효과에 유의한 영향을 미치는 것으로 파악되었다. 아울러 제품의 특성과 트윗 메시지 게시일에 따라 구전효과에 미치는 영향이 달라짐을 발견하였다. 본 연구의 결과는 신제품 프로모션과 관련한 구전효과 발생에 있어 온라인 소셜네트워크의 영향에 관한 연구기반을 제공하며 기업이 새로운 제품에 대한 광고 및 마케팅 커뮤니케이션을 수행 함에 있어 온라인 소셜네트 워크를 효과적으로 활용하는데 필요한 유용한 가이드를 제시 할 것으로 기대된다.
As the number of smart phone users increases, many organizations begin to adopt social media rapidly to diversify communication channels with customers. Specifically, twitter, which supports instant and two-way communications between users and between organizations and users, has been adopted by many organizations as an efficient way not only to identify new customers but also to retain existing customers. However, little attention has been given to the issue on how organizations can effectively use twitter to improve customer satisfaction. To explore the issue, this study proposes two major dimensions, customer participation and organization resource utilization, which should be considered in building a utilization strategy for twitter in organizations. We then develop four different combinations along with these dimensions-follow, mention, retweet, and review types. Based on case studies of 27 organizations that use twitter, we evaluate the degrees of customer participation, resource utilization, and customer satisfaction, and examine matching or mismatching of the adoption purpose of twitter and its actual utilization. The study results reveal that organizations in the matching group show higher customer satisfaction that those in the mismatching group. This study sheds new light on twitter research by developing a new conceptual framework and using a case study approach to explore the relationship between the utilization strategy of twitter and customer satisfaction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.