• 제목/요약/키워드: Return water

검색결과 526건 처리시간 0.013초

수리·수문해석 모델을 활용한 농업용수 회귀수량 추정 (Estimating the Return Flow of Irrigation Water for Paddies Using Hydrology-Hydraulic Modeling)

  • 신지현;남원호;윤동현;양미혜;정인균;이광야
    • 한국농공학회논문집
    • /
    • 제65권6호
    • /
    • pp.1-13
    • /
    • 2023
  • Irrigation return flow plays an important role in river flow forecasting, basin water supply planning, and determining irrigation water use. Therefore, accurate calculation of irrigation return flow rate is essential for the rational use and management of water resources. In this study, EPA-SWMM (Environmental Protection Agency-Storm Water Management Model) modeling was used to analyze the irrigation return flow and return flow rate of each intake work using irrigation canal network. As a result of the EPA-SWMM, we tried to estimate the quick return flow and delayed return flow using the water supply, paddy field, drainage, infiltration, precipitation, and evapotranspiration. We selected 9 districts, including pumping stations and weirs, to reflect various characteristics of irrigation water, focusing on the four major rivers (Hangang, Geumgang, Nakdonggang, Yeongsangang, and Seomjingang). We analyzed the irrigation period from May 1, 2021 to September 10, 2021. As a result of estimating the irrigation return flow rate, it varied from approximately 44 to 56%. In the case of the Gokseong Guseong area with the highest return flow rate, it was estimated that the quick return flow was 4,677 103 m3 and the delayed return flow was 1,473 103 m3 , with a quick return flow rate of 42.6% and a delayed return flow rate of 13.4%.

마둔저수지 농업유역의 관개 회귀수량 추정 (Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir)

  • 김하영;남원호;문영식;방나경;김한중
    • 한국농공학회논문집
    • /
    • 제63권2호
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

저수지 관개지구의 농업용수 회귀 특성 분석 (Characteristics of Irrigation Return Flow in a Reservoir Irrigated District)

  • 송정헌;송인홍;김진택;강문성
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.69-78
    • /
    • 2015
  • The objective of this study was to investigate characteristics of irrigation return flow from paddy block in a reservoir irrigated district during growing seasons. The irrigation return flow was divided into three parts, quick return flow from irrigation canal (RFI), quick return flow from drainage canal (RFD), and delayed return flow (DRF). The RFI was calculated from water level and stage-discharge relationships at the ends of the irrigation canals. The DRF was estimated using measured infiltration amount from paddy fields of the irrigated district. A combined monitoring and modeling method was used to estimate the RFD by subtracting surface runoff from surface drainage. The paddy block irrigated from the Idong reservoir was selected to study the irrigation return flow components. The results showed that daily agricultural water supply (AWS), the RFI, and the RFD were $27.4mm\;day^{-1}$, $4.9mm\;day^{-1}$, and $19.8mm\;day^{-1}$, respectively in May, which were greater than other months (p<0.05). The return flow ratio of the RFI and the RFD were the greatest in July (34.6%) and May (72.3%), respectively. The daily AWS was closely correlated with the RFD (correlation coefficients of 0.76~0.86) in except for July with, while correlation coefficient with the RFI were 0.56 and 0.42 in June and July, respectively (p<0.01). The total irrigation return flow was 1,965 mm in 2011, and 1,588 mm in 2012, resulting in total return flow ratio of 84.6% and 79.1%, respectively. This results indicate that substantial amounts of agricultural water were returned to streams as irrigation return flow. Thus, irrigation return flow should be fully considered into the agricultural water resources planning in Korea.

소규모 논지대의 관개회귀수량 실측조사 및 분석 (Irrigation Return Flow Measurements and Analysis in a Small Size Paddy Area)

  • 정상옥;박기중
    • 한국수자원학회논문집
    • /
    • 제37권7호
    • /
    • pp.517-526
    • /
    • 2004
  • 농업용수는 국가의 수자원 관리에서 매우 중요한 부분이다. 관개회귀수는 농지에 관개한 수량 중에서 다시 하천으로 회귀되는 양이며 관개회귀수량을 정확하게 추정하는 것은 수자원 개발 계획과 관리에 있어서 매우 중요하다. 본 연구는 낙동강유역 내의 소규모 논지대에 조사지구를 선정하여 2003년도 영농기간 동안 농업용수 공급량과 배수량을 조사 분석하여 회귀율을 산출하고, 이를 향후 수자원계획의 기초자료로 활용하기 위하여 수행하였다. 조사대상 지구인 경북 청도 녹명지구의 관개기간 중 신속회귀율은 30.2%, 지연 회귀율은 23.5%로 전체 회귀율은 53.7%로 나타났다.

Estimation of irrigation return flow from paddy fields based on the reservoir storage rate

  • An, Hyunuk;Kang, Hansol;Nam, Wonho;Lee, Kwangya
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.19-28
    • /
    • 2020
  • This study proposed a simple estimation method for irrigation return flow from paddy fields using the water balance model. The merit of this method is applicability to other paddy fields irrigated from agricultural reservoirs due to the simplicity compared with the previous monitoring based estimation method. It was assumed that the unused amount of irrigation water was the return flow which included the quick and delayed return flows. The amount of irrigation supply from a reservoir was estimated from the reservoir water balance with the storage rate and runoff model. It was also assumed that the infiltration was the main source of the delayed return flow and that the other delayed return flow was neglected. In this study, the amount of reservoir inflow and water demand from paddy field are calculated on a daily basis, and irrigation supply was calculated on 10-day basis, taking into account the uncertainty of the model and the reliability of the data. The regression rate was calculated on a yearly basis, and yearly data was computed by accumulating daily and 10-day data, considering that the recirculating water circulation cycle was relatively long. The proposed method was applied to the paddy blocks of the Jamhong and Seosan agricultural reservoirs and the results were acceptable.

대평 양수장 지구의 농업용수회귀율 추정 (Estimation of Return Flow Rate of Irrigation Water in Daepyeong Pumping District)

  • 김태철;이호천;문종필
    • 한국농공학회논문집
    • /
    • 제52권1호
    • /
    • pp.41-49
    • /
    • 2010
  • Return flow rate of irrigation water was estimated by water balance method. Daepyeong pumping district to irrigate 75.8 ha of rice paddy in the Geum river basin was selected to install gauging instruments to collect data such as weather, water levels, infiltration rate and evapotranspiration during irrigation season (May 27 to Sept. 20) in 2003 and 2004. Irrigation and drainage discharge were calculated from the rating curve and evapotranspiration was estimated both by the modified Penman formula and by the lysimeter. The results were as followed : 1. Total amounts of pumping water during irrigation season were $1,076,000\;m^3$ in 2003 and $1,848,000\;m^3$ in 2004. Total amounts of rainfall were 1336.0mm and 1003.0mm respectively during the irrigation season in 2003 and 2004. 2. It was surveyed that the amount of infiltration was 196.5 mm (2.2 mm/day). The gauged evapotranspiration was 311.0 mm (3.5 mm/day) and the calculated evapotranspiration was 346.0 mm (3.9 mm/day) during irrigation period in 2003. It was surveyed that the amount of infiltration was 169.9 mm (2.4 mm/day). The amount of gauged evapotranspiration was 377.3 mm (5.3 mm/day) and the calculated evapotranspiration was 454.5 mm (6.6 mm/day) during irrigation period in 2004. 3. The rates of quick and delayed return flow were 52.4 % and 17.7 % respectively, and so return flow rate was 70.1 % in 2003. The rates of quick and delayed return flow were 45.4 % and 16.1 % respectively, and so return flow rate was 61.5 % in 2004. It means that average return flow rate in the Daepyeong pumping district was assumed to be 65 %.

Analysis of Flooding Discharge in Seoul-Metropolitan Area based on Return Periods

  • Ang Peng;Seong Cheol Shin;Quan Feng;Junhyeong Lee;Soojun Kim;Hung Soo Kim
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.349-349
    • /
    • 2023
  • In recent years, urban floods have become more frequent, causing significant harm to society and resulting in substantial losses to the national economy and people's lives and property. To assess the impact of floods on people's safety and property in Seoul, annual precipitation data from 1980 to 2020 was analyzed for return periods of 5, 10, 20, 50, and 100 years. A rainfall runoff simulation model for Seoul was established using HEC-HMS and HEC-RAS models. The study revealed that at a 5-year return period, water began to accumulate in Seoul, but it was not severe. However, at a 10-year return period, the water accumulation was relatively serious, and inundation began to occur. At a 20-year return period, there was serious water accumulation and inundation in Seoul. During a 50-year return period, Seoul suffered from severe inundation in commercial areas, resulting in substantial losses to the local economy. The findings indicate that Seoul City faces high flood risks, and measures should be taken to mitigate the impact of floods on the city's residents and economy.

  • PDF

용수 수요를 고려한 DAWAST 모형의 적용성 평가 (Applicability of the DAWAST Model Considered Return flows)

  • 노재경
    • 한국수자원학회논문집
    • /
    • 제36권6호
    • /
    • pp.1097-1107
    • /
    • 2003
  • 개념적 집중형 일 유출모형인 DAWAST모형을 선정하여 용수수요를 고려할 수 있는 가능성을 검토하였다. 기존 모형에 의한 모의 유량을 자연유량으로 보았고, 농업용수, 생활용수, 공업용수 등 회귀수량을 더한 값을 하천유량으로 가정하였다. 농업용수의 수요량은 회귀수량이 논으로부터만 발생하는 것으로 보아 논 용수량만을 고려하였으며, 수정 Penman공식에 의한 증발산량, 침투량, 재배관리수량, 유효우량 등을 고려한 일별 감수심에 의해 일별로 계산하였다. 생활용수, 공업용수 수요량은 일 평균값에 월별 변동계수를 고려하여 일별로 계산하였다. 신뢰도가 높은 대청댐 운영실적의 유입량 자료를 이용하여 용수수요를 고려한 DAWAST 모형의 적용성을 평가하였다. 농업용수의 회귀율은 35%, 생공용수의 회귀율은 65% 적용하였으며, 1983년∼2001년 연평균하여 강우량 1184.6 mm 관측 유입량 667.3 mm 모의 유입량 652.6 mm 로 용수수요를 고려하지 않은 경우의 모의 유입량 606.8 mm에 비해 45.8 mm 가 높게 나타났으며, 모의/관측 유입량 비율도 90.9 % 에서 97.8% 로 개선되는 결과를 얻었다.

금강유역 양수장지구의 농업용수 회귀량 산정 (Estimation of the Irrigation Return Flow of Pumped Water in the Keum River Watershed)

  • 김영식;박정남;안병기;김태철
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.105-110
    • /
    • 1999
  • Unused irrigation water due to delievery losses and management losses. and ground water releases from infiltration in the paddy irrigation system are eventually returned to the stream. They are called as irrigation return flow. It affects the discharge of drought flow in the down strenamflow. And it may contain chemicals, and threaten streamflow quality . Thus, the accurage estimation of irrigation return flow is important to the streamflow modeling and water resources planning , and also to the control of agriculutral nonpoint source pollution . The irrigation return flow of pumped water was investigated in the Keum river watershed.

  • PDF

유역모델을 이용한 농업용수 신속회귀수량 산정 연구 (A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model)

  • 이지완;정충길;김다예;맹승진;정현식;조영식;김성준
    • 한국수자원학회논문집
    • /
    • 제55권5호
    • /
    • pp.321-331
    • /
    • 2022
  • 본 연구에서는 유역단위의 물수지 분석과 농업용수의 수문학적 매커니즘을 모의 할 수 있는 유역 모델링 방법을 이용하여 회귀수량 산정기법을 제시하고자 하였다. SWAT 모델을 이용하여 영산강수계 대표적인 농업지역인 만봉천 표준유역 (97.34 km2)에 대해 담수 논 모의가 고려된 유역물수지 분석을 실시하였다. 회귀수량 산정에 앞서, 나주 유량관측소의 일 유량 자료를 이용하여 SWAT을 검·보정하였다. R2, Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE)는 각각 0.73, 0.70, 0.64 mm/day으로 분석되었다. 3년 동안(2015~2017) 모의 결과를 토대로 관개기간(4/1~9/30)에 대한 신속 회귀수량과 공급량 대비 회귀율을 산정하였고, 평균 53.4%로 분석되었다. 본 연구에서 제시한 유역 회귀수량 모델링 기법은 향후 합리적인 유역물관리를 위한 최적 농업용수 공급방안에 대한 기초자료 구축에 활용될 수 있다.