• Title/Summary/Keyword: Retinopathy

Search Result 146, Processing Time 0.024 seconds

The Association between Peroxisome Proliferator-Activated Receptor-Gamma C161T Polymorphism and Type 2 Diabetic Complications (제 2형 당뇨병 및 당뇨 합병증의 발생과 Peroxisome Proliferator-Activated Receptor-$\gamma2$ C161T 유전자 다형성과의 관계)

  • Lee, Byung-Cheol;Ahn, Se-Young;Doo, Ho-Kyung;Ahn, Young-Min
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.902-910
    • /
    • 2007
  • Objective : Peroxisome proliferator-activated receptor (PPAR)-gamma, a transcription factor in adipocyte differentiation, has important effects on insulin sensitivity, atherosclerosis, endothelial cell function and inflammation. Through these effects, PPAR-gamma2 might be involved with type 2 diabetes and vascular disease, including diabetic complications. Recently, it has been reported that the C161T polymorphism in the exon 6 of PPAR-gamma is associated with type 2 diabetes interacting with uncoupling protein 2 (UCP2) gene, and is associated with acute myocardial infarction. We studied the association of this polymorphism with type 2 diabetes and its complications, such as retinopathy, ischemic stroke, nephropathy and neuropathy in Korean non-diabetic and type 2 diabetic populations. Methods : Three hundred and thirty eight type 2 diabetic patients (retinopathy: 64, ischemic stroke: 67, nephropathy: 39 and neuropathy: 76) and 152 healthy matched control subjects were evaluated. The PPAR-gamma C161T polymorphism was analyzed by PCR-RFLP. Results : PPAR-gamma C161T genotype and allele frequency did not show significant differences between type 2 diabetic patients and healthy controls (T allele: 17.0 vs. 14.5, OR= 1.21, P=0.3188). In the analysis for diabetic complications, T allele in diabetic nephropathy was significantly higher than controls (P=0.0358). T allele in the ischemic stroke patients was also higher than healthy controls, although it had no significance (P=0.1375). Conclusions : These results suggest that the C161T polymorphism of the PPAR-gamma gene might be associated with diabetic nephropathy in type 2 diabetes.

  • PDF

Peripapillary Retinal Nerve Fiber Layer Thicknesses Did Not Change in Long-term Hydroxychloroquine Users

  • Lee, Eun Jung;Kim, Sang Jin;Han, Jong Chul;Eo, Doo Ri;Lee, Min Gyu;Ham, Don-Il;Kang, Se Woong;Kee, Changwon;Lee, Jaejoon;Cha, Hoon-Suk;Koh, Eun-Mi
    • Korean Journal of Ophthalmology
    • /
    • v.32 no.6
    • /
    • pp.459-469
    • /
    • 2018
  • Purpose: To evaluate changes in the peripapillary retinal nerve fiber layer (RNFL) thicknesses using spectral-domain optical coherence tomography (SD-OCT) in hydroxychloroquine (HCQ) users. Methods: The medical records of HCQ users were retrospectively reviewed. In these HCQ users, an automated perimetry, fundus autofluorescence photography, and SD-OCT with peripapillary RNFL thickness measurements were performed. The peripapillary RNFL thicknesses were compared between the HCQ users and the control groups. The relationships between the RNFL thicknesses and the duration or cumulative dosage of HCQ use were analyzed. Results: This study included 77 HCQ users and 20 normal controls. The mean duration of HCQ usage was $63.6{\pm}38.4$ months, and the cumulative dose of HCQ was $528.1{\pm}3.44g$. Six patients developed HCQ retinopathy. Global and six sectoral RNFL thicknesses of the HCQ users did not significantly decrease compared to those of the normal controls. No significant correlation was found between the RNFL thickness and the duration of use or cumulative dose. The eyes of those with HCQ retinopathy had temporal peripapillary RNFL thicknesses significantly greater than that of normal controls. Conclusions: The peripapillary RNFL thicknesses did not change in the HCQ users and did not correlate with the duration of HCQ use or cumulative doses of HCQ. RNFL thickness is not a useful biomarker for the early detection of HCQ retinal toxicity.

Factors Influencing on Vision-related Quality of Life in Patients with Retinal Diseases Receiving Intravitreal Injections (유리체강 내 주입술을 받는 망막질환자의 시각 관련 삶의 질 영향요인)

  • Kim, Hyunyoung;Ha, Yeongmi
    • Journal of Korean Clinical Nursing Research
    • /
    • v.27 no.1
    • /
    • pp.54-65
    • /
    • 2021
  • Purpose: The purpose of this study was to identify influencing factors on vision-related quality of life in patients with retinal diseases receiving intravitreal injections by examining relationships among anxiety, depression, coping, eye health behaviors and vision-related quality of life. Methods: One hundred and five outpatients who were diagnosed with macular degeneration and diabetic retinopathy were recruited from one university hospital during August 16, 2019 to March 25, 2020. Data were analyzed using descriptive statistics (frequency and percentage, mean, standard deviation), and t-tests, ANOVA, Scheffé test, Pearson's correlations, and stepwise multiple regressions using the IBM SPSS Statistics 25.0. Results: The vision-related quality of life according to general characteristics of retinal disease patients with intravitreal injection showed significant differences in age (F=3.01, p=.034), subjective economic status (F=5.83, p=.004), types of retinal disease (t=2.62, p=.010), and disease in both eyes (t=-3.04, p=.003). The vision-related quality of life showed a significant positive correlation with age (r=.24, p=.012), and negative correlations with anxiety (r=-.66, p<.001), depression (r=-.48, p<.001), and emotion-focused coping (r=-.20, p=.036). The hierarchical regression analysis indicated that factors affecting vision-related quality of life in patients with retinal diseases were anxiety and subjective economic status, accounting for 47.0% of the variances of the vision-related quality of life. Conclusion: Based on our results, health professionals need to pay attention to patients with low socioeconomic status due to frequent treatments. Also, a program needs to be developed to decrease anxiety for outpatients receiving intravitreal injections to improve their vision-related quality of life.

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Screening of Korean Herbal Medicines with Inhibitory Effect on Aldose Reductase (IX) (한국 약용식물 추출물의 알도즈 환원 효소 억제 효능 검색(IX))

  • Choi, So-Jin;Kim, Young Sook;Kim, Joo Hwan;Kim, Jin Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.354-358
    • /
    • 2014
  • Aldose reductase (AR) has been demonstrated to play important role in the development of the diabetic complications such as diabetic retinopathy, diabetic neuropathy and diabetic nephropathy. To discover novel treatments for diabetic complications from natural sources, 69 Korean herbal medicines have been investigated for inhibitory activities on AR. Among them, 7 herbal medicines, Eleutherococcus sessiliflorus (stems), Artemisia japonica (whole plants), Wisteria floribunda (leaves), Eurya japonica (stems, twigs and leaves, leaves), Ampelopsis brevipedunculata (stems) exhibited a significant inhibitory activity compared with 3,3-tetramethyleneglutaric acid as positive control.

Prolyl 4 Hydroxylase: A Critical Target in the Pathophysiology of Diseases

  • Kant, Ravi;Bali, Anjana;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.111-120
    • /
    • 2013
  • Prolyl 4 hydroxylases (P4H) are iron- and 2-oxoglutamate-dependent dioxygenase enzymes and hypoxia-inducible transcription factor (HIF)-P4Hs play a critical role in the regulating oxygen homeostasis in the local tissues as well in the systemic circulation. Over a period of time, a number of prolyl hydroxylase inhibitors and activators have been developed. By employing the pharmacological tools and transgenic knock out animals, the critical role of these enzymes has been established in the pathophysiology of number of diseases including myocardial infarction, congestive heart failure, stroke, neurodegeneration, inflammatory disease, respiratory diseases, retinopathy and others. The present review discusses the different aspects of these enzymes including their pathophysiological role in disease development.

Alteration in Erythrocyte Deformability in Diabetes Mellitus

  • Shin, Se-Hyun;Singh, Megha
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • Diabetes mellitus (DM) is a metabolic disorder, characterized by varying or persistent hyperglycemia, which induces several changes in the erythrocyte membrane and its cytoplasm, leading to alteration in the deformability. Techniques applied to measure this are based on filtration of erythrocyte suspension through a membrane and to obtain diffraction pattern under sheared conditions. Ektacytometry requiring less quantity of blood with disposable flow chamber used to measure the deformability of erythrocytes obtained from patients with diabetes and also associated with nephropathy and retinopathy. A decreasing trend of deformability in these patients is observed. The shape parameter form factor, as determined by image processing procedure, increases with the increased of blood glucose levels and shows a pattern similar to filtration time of erythrocyte suspensions through cellulose membranes. Further work is suggested to detect micro-level changes in cell membrane in diabetic patients

  • PDF

A novel therapeutic approach of Hachimi-jio-gan to diabetes and its complications

  • Yokozawa, Takako;Yamabe, Noriko;Cho, Eun-Ju
    • Advances in Traditional Medicine
    • /
    • v.5 no.2
    • /
    • pp.75-91
    • /
    • 2005
  • Great efforts have been made to improve both the quality of life and life expectancy of diabetes by treating problems associated with chronic complications such as neuropathy, retinopathy and nephropathy. In particular, diabetes is an increased risk of developing several types of kidney disease, and the predominant cause of end-stage renal disease in patients with this disorder is diabetic nephropathy. Therefore, prevention of the occurrence and progression of diabetes and its complications has become a very important issue. The scientific observations of an animal model of streptozotocin-induced diabetes, spontaneously occurring diabetes and diabetic nephropathy in this study suggest that one of the Kampo prescriptions, Hachimi-jio-gan comprising eight constituents, is a novel therapeutic agent.

Role of the CCN protein family in cancer

  • Kim, Hyungjoo;Son, Seogho;Shin, Incheol
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.486-492
    • /
    • 2018
  • The CCN protein family is composed of six matricellular proteins, which serve regulatory roles rather than structural roles in the extracellular matrix. First identified as secreted proteins which are induced by oncogenes, the acronym CCN came from the names of the first three members: CYR61, CTGF, and NOV. All six members of the CCN family consist of four cysteine-rich modular domains. CCN proteins are known to regulate cell adhesion, proliferation, differentiation, and apoptosis. In addition, CCN proteins are associated with cardiovascular and skeletal development, injury repair, inflammation, and cancer. They function either through binding to integrin receptors or by regulating the expression and activity of growth factors and cytokines. Given their diverse roles related to the pathology of certain diseases such as fibrosis, arthritis, atherosclerosis, diabetic nephropathy, retinopathy, and cancer, there are many emerging studies targeting CCN protein signaling pathways in attempts to elucidate their potentials as therapeutic targets.