• Title/Summary/Keyword: Retinoid A receptor alpha

Search Result 13, Processing Time 0.03 seconds

Retinoid X Receptor Isoforms $\alpha$ and $\beta$ Differentially Regulate 3,5,3’ -Triiodothyronine- induced Transcription

  • Rhee, Myung-chull
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.489-493
    • /
    • 1998
  • Various heterodimers of the thyroid hormone receptor (TR) with other nuclear hormone receptors confer a wide range of transcriptional activities on thyroid hormone response elements (TREs) in the presence of the thyroid hormone ($T_3$). The present study analyzed the potential roles of retinoid X receptor (RXR) isoforms $\alpha$ and $\beta$ in $T_3$-mediated transcription on a well characterized TRE, a direct repeat of AGGTCA separated by four nucleo-tides (DR4), using electrophoretic mobility shift assays and transient transfection in CV-1 cells. We demonstrated that RXR$\alpha$ supressed liganded $TR_{\alpha}$-induced transcription while $RXR_{\beta}$ did not although both $TR_{\alpha}/RXR_{\alpha}$ and $TR_{\alpha}/RXR_{\beta}$ heterodimers were the predominant forms bound to the TRE-DR4 in the presence of $T_3$. We further demonstrated using Scatchard analysis that the two heterodimers had similar affinities for the TRE-DR4. All these observations suggest that the TRE-DR4 accomodates different types of TR/RXR heterodimers for a more finely tuned transcriptional response to $T_3$.

  • PDF

Mediation of antiinflammatory effects of Rg3-enriched red ginseng extract from Korean Red Ginseng via retinoid X receptor α-peroxisome-proliferating receptor γ nuclear receptors

  • Saba, Evelyn;Irfan, Muhammad;Jeong, Dahye;Ameer, Kashif;Lee, Yuan Yee;Park, Chae-Kyu;Hong, Seung-Bok;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.442-451
    • /
    • 2019
  • Background: Ginseng has a wide range of beneficial effects on health, such as the mitigation of minor and major inflammatory diseases, cancer, and cardiovascular diseases. There are abundant data regarding the health-enhancing properties of whole ginseng extracts and single ginsenosides; however, no study to date has determined the receptors that mediate the effects of ginseng extracts. In this study, for the first time, we explored whether the antiinflammatory effects of Rg3-enriched red ginseng extract (Rg3-RGE) are mediated by retinoid X receptor ${\alpha}$-peroxisome-proliferating receptor ${\gamma}$ ($RXR{\alpha}-PPAR{\gamma}$) heterodimer nuclear receptors. Methods: Nitric oxide assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay, quantitative reverse transcription polymerase chain reaction, nuclear hormone receptor-binding assay, and molecular docking analyses were used for this study. Results: Rg3-RGE exerted antiinflammatory effects via nuclear receptor heterodimers between $RXR{\alpha}$ and $PPAR{\gamma}$ agonists and antagonists. Conclusion: These findings indicate that Rg3-RGE can be considered a potent antiinflammatory agent, and these effects are likely mediated by the nuclear receptor $RXR{\alpha}-PPAR{\gamma}$ heterodimer.

Effects of Co-Expression of Liver X Receptor β-Ligand Binding Domain with its Partner, Retinoid X Receptor α-Ligand Binding Domain, on their Solubility and Biological Activity in Escherichia coli

  • Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.247-254
    • /
    • 2015
  • In this presentation, I describe the expression and purification of the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a commercially available double cistronic vector, pACYCDuet-1, to express the receptor heterodimer in a single cell as the soluble form. I describe here the expression and characterization of a biologically active heterodimer composed of the liver X receptor β-ligand binding domain and retinoid X receptor α-ligand binding domain. Although many of these proteins were previously seen to be produced in E. coli as insoluble aggregates or "inclusion bodies", I show here that as a form of heterodimer they can be made in soluble forms that are biologically active. This suggests that co-expression of the liver X receptor β-ligand binding domain with its binding partner improves the solubility of the complex and probably assists in their correct folding, thereby functioning as a type of molecular chaperone.

Retinoid X Receptor α Overexpression Alleviates Mitochondrial Dysfunction-induced Insulin Resistance through Transcriptional Regulation of Insulin Receptor Substrate 1

  • Lee, Seung Eun;Koo, Young Do;Lee, Ji Seon;Kwak, Soo Heon;Jung, Hye Seung;Cho, Young Min;Park, Young Joo;Chung, Sung Soo;Park, Kyong Soo
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.356-361
    • /
    • 2015
  • Mitochondrial dysfunction is associated with insulin resistance and diabetes. We previously showed that retinoid X receptor ${\alpha}$ ($RXR{\alpha}$) played an important role in transcriptional regulation of oxidative phosphorylation (OXPHOS) genes in cells with mitochondrial dysfunction caused by mitochondrial DNA mutation. In this study, we investigated whether mitochondrial dysfunction induced by incubation with OXPHOS inhibitors affects insulin receptor substrate 1 (IRS1) mRNA and protein levels and whether $RXR{\alpha}$ activation or overexpression can restore IRS1 expression. Both IRS1 and $RXR{\alpha}$ protein levels were significantly reduced when C2C12 myotubes were treated with the OXPHOS complex inhibitors, rotenone and antimycin A. The addition of $RXR{\alpha}$ agonists, 9-cis retinoic acid (9cRA) and LG1506, increased IRS1 transcription and protein levels and restored mitochondrial function, which ultimately improved insulin signaling. $RXR{\alpha}$ overexpression also increased IRS1 transcription and mitochondrial function. Because $RXR{\alpha}$ overexpression, knock-down, or activation by LG1506 regulated IRS1 transcription mostly independently of mitochondrial function, it is likely that $RXR{\alpha}$ directly regulates IRS1 transcription. Consistent with the hypothesis, we showed that $RXR{\alpha}$ bound to the IRS1 promoter as a heterodimer with peroxisome proliferator-activated receptor ${\delta}$ ($PPAR{\delta}$). These results suggest that $RXR{\alpha}$ overexpression or activation alleviates insulin resistance by increasing IRS1 expression.

Loss of RAR-α and RXR-α and enhanced caspase-3-dependent apoptosis in N-acetyl-p-aminophenol-induced liver injury in mice is tissue factor dependent

  • Abdel-Bakky, Mohamed Sadek;Helal, Gouda Kamel;El-Sayed, El-Sayed Mohamed;Amin, Elham;Alqasoumi, Abdulmajeed;Alhowail, Ahmad;Abdelmoti, Eman Sayed Said;Saad, Ahmed Saad
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.385-393
    • /
    • 2021
  • Tissue factor (TF) activates the coagulation system and has an important role in the pathogenesis of various diseases. Our previous study stated that retinoid receptors (RAR-α and RXR-α) are released as a lipid droplet in monocrotaline/lipopolysaccharide-induced idiosyncratic liver toxicity in mice. Herein, the interdependence between the release of retinoid receptors RAR-α and RXR-α and TF in N-acetyl-p-aminophenol (APAP)-induced mice liver toxicity, is investigated. Serum alanine transaminase (ALT) level, platelet and white blood cells (WBCs) counts, protein expression of fibrin, TF, cyclin D1 and cleaved caspase-3 in liver tissues are analyzed. In addition, histopathological evaluation and survival study are also performed. The results indicate that using of TF-antisense (TF-AS) deoxyoligonucleotide (ODN) injection (6 mg/kg), to block TF protein synthesis, significantly restores the elevated level of ALT and WBCs and corrects thrombocytopenia in mice injected with APAP. TF-AS prevents the peri-central overexpression of liver TF, fibrin, cyclin D1 and cleaved caspase-3. The release of RXR-α and RAR-α droplets, in APAP treated sections, is inhibited upon treatment with TF-AS. In conclusion, the above findings designate that the released RXR-α and RAR-α in APAP liver toxicity is TF dependent. Additionally, the enhancement of cyclin D1 to caspase-3-dependent apoptosis can be prevented by blocking of TF protein synthesis.

T0901317 as an Inhibitor of Transcriptional Activation of Constitutive Androstane Receptor (CAR) (Constitutive androstane receptor (CAR)의 전사활성 저해제로서의 T0901317)

  • Kim, Hyun-Ha;Seol, Won-Gi
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.481-485
    • /
    • 2011
  • T0901317 is a potent synthetic ligand for liver X receptor (LXR, NR1H2/3), a member of the nuclear receptor superfamily that functions as a transcription factor. However, T0901317 has been also reported to modulate the activity at least four other nuclear receptors (NRs), acting as agonists for farnesoid X receptor (FXR, NR1H4) and pregnane X receptor (PXR, NR1I2) and as antagonists for androgen receptor (AR, NR3C4) and retinoid-related orphan receptor-${\alpha}$ (ROR-${\alpha}$, NR1F1). We report here that T0901317 can also function as an inhibitor for constitutive androstane receptor (CAR, NR1I3). Since CAR is a major player of xenobiotic and cholesterol metabolism in the liver, along with PXR, FXR and LXR, which are reported to be regulated by T0901317, this further complicates the interpretation of potential results with T0901317 in liver cells.

T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis

  • Kim, Sumi;Lee, Nari;Park, Eui-Soon;Yun, Hyeongseok;Ha, Tae-Uk;Jeon, Hyoeun;Yu, Jiyeon;Choi, Seunga;Shin, Bongjin;Yu, Jungeun;Rhee, Sang Dal;Choi, Yongwon;Rho, Jaerang
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.

15-DEOXY-$\Delta^{12,14}$-PROSTAGLANDIN $J_2$, A LIGAND FOR EROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-$\gamma$ INDUCES APOPTOSIS IN NEUROBLASTOMA CELLS

  • Kim, Eun-Joung;Jung, Kyoung-Mi;Park, Ki-Sook;Oh, Jae-Ho;Song, Chi-Won;Chung, Soo-Youn;Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.167-167
    • /
    • 2001
  • Peroxisome proliferator-activated receptors(PPARs) are member of the neuclear hormone receptor superfamiliy of ligand-dependent transcription factors that heterodimerizes with the retinoid X receptor to function as a transcriptional regulator. They are divided into three subtypes(PPAR-$\alpha$, $\beta$ and ${\gamma}$).(omitted)

  • PDF

Retinoid Receptors in Gastric Cancer: Expression and Influence on Prognosis

  • Hu, Kong-Wang;Chen, Fei-Hu;Ge, Jin-Fang;Cao, Li-Yu;Li, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1809-1817
    • /
    • 2012
  • Background: Gastric cancer is frequently lethal despite aggressive multimodal therapies, and new treatment approaches are therefore needed. Retinoids are potential candidate drugs: they prevent cell differentiation, proliferation and malignant transformation in gastric cancer cell lines. They interact with nuclear retinoid receptors (the retinoic acid receptors [RARs] and retinoid X receptors [RXRs]), which function as transcription factors, each with three subclasses, ${\alpha}$, ${\beta}$ and ${\gamma}$. At present, little is known about retinoid expression and influence on prognosis in gastric cancers. Patients and Methods: We retrospectively analyzed the expression of the subtypes RARa, $RAR{\beta}$, $RAR{\gamma}$, RXRa, $RXR{\beta}$, $RXR{\gamma}$ by immunohistochemistry in 147 gastric cancers and 51 normal gastric epithelium tissues for whom clinical follow-up data were available and correlated the results with clinical characteristics. In addition, we quantified the expression of retinoid receptor mRNA using real-time PCR (RT-PCR) in another 6 gastric adenocarcinoma and 3 normal gastric tissues. From 2008 to 2010, 80 patients with gastric cancers were enrolled onto therapy with all-trans-retinoic acid (ATRA). Results: RARa, $RAR{\beta}$, $RAR{\gamma}$ and $RXR{\gamma}$ positively correlated with each other (p < 0.001) and demonstrated significantly lower levels in the carcinoma tissue sections (p < 0.01), with lower $RAR{\beta}$, $RAR{\gamma}$ and RXRa expression significantly related to advanced stages (p < =0.01). Tumors with poor histopathologic grade had lower levels of RARa and $RAR{\beta}$ in different histological types of gastric carcinoma (p < 0.01). Patients whose tumors exhibited low levels of RARa expression had significantly lower overall survival compared with patients who had higher expression levels of this receptor (p < 0.001, HR=0.42, 95.0% CI 0.24-0.73), and patients undergoing ATRA treatment had significantly longer median survival times (p = 0.007, HR=0.41, 95.0% CI 0.21-0.80). Conclusions: Retinoic acid receptors are frequently expressed in epithelial gastric cancer with a decreased tendency of expression and RARa may be an indicator of a positive prognosis. This study provides a molecular basis for the therapeutic use of retinoids against gastric cancer.

A Novel All-trans Retinoid Acid Derivative Induces Apoptosis in MDA-MB-231 Breast Cancer Cells

  • Wang, Bei;Yan, Yun-Wen;Zhou, Qing;Gui, Shu-Yu;Chen, Fei-Hu;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10819-10824
    • /
    • 2015
  • Aims: To explore the effect and probable mechanism of a synthetic retinoid 4-amino-2-tri-fluoromethylphenyl ester (ATPR) on apoptosis of MDA-MB-231 breast cancer cells. Materials and Methods: MTT assays were performed to measure the proliferation of MDA-MB-231 cells treated with different concentrations of all-trans retinoic acid (ATRA) and ATPR. Morphologic changes were observed by microscopy. The apoptosis rates and cell cycling of MDA-MB-231 cells treated with ATRA or ATPR were assessed using flow cytometry analysis. Expression of retinoic acid receptor and phosphorylation of ERK, JNK, p38 proteins were detected by Western blotting. Results: Treatment of the cells with the addition of $15{\mu}mol/L$ ATPR for 48 h clearly demonstrated reduced cell numbers and deformed cells, whereas no changes in the number and morphology were observed after treatment with ATRA. The apoptosis rate was 33.2% after breast cancer MDA-MB-231 cells were treated by ATPR ($15{\mu}mol/L$) whereas ATRA ($15{\mu}mol/L$) had no apoptotic effect. ATPR inhibited the phosphorylation of ERK, JNK, and p38 while ATRA had no significant effect. ATPR inhibited the expression of BiP and increased the expression of Chop at the protein level compared with control groups, ATRA and ATPR both decreased the protein expression of $RXR{\alpha}$, ATPR reduced the protein expression of $RAR{\beta}$ and $RXR{\beta}$ while ATRA did not decrease $RAR{\beta}$ or $RXR{\beta}$. Conclusions: ATPR could induce apoptosis of breast cancer MDA-MB-231 cells, possible mechanisms being binding to $RAR{\beta}/RXR{\beta}$ heterodimers, then activation of ER stress involving the MAPK pathway.